Useful topologies and separable systems
DOI:
https://doi.org/10.4995/agt.2000.3024Keywords:
Complete regular topology, Weak topology, Normal topology, Short topology, Countably bounded topology, Countably bounded linear preorderAbstract
Let X be an arbitrary set. A topology t on X is said to be useful if every continuous linear preorder on X is representable by a continuous real valued order preserving function. Continuous linear preorders on X are induced by certain families of open subsets of X that are called (linear) separable systems on X. Therefore, in a first step useful topologies on X will be characterized by means of (linear) separable systems on X. Then, in a second step particular topologies on X are studied that do not allow the construction of (linear) separable systems on X that correspond to non representable continuous linear preorders. In this way generalizations of the Eilenberg Debreu theorems which state that second countable or separable and connected topologies on X are useful and of the theorem of Estévez and Hervés which states that a metrizable topology on X is useful, if and only if it is second countable can be proved.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.