Remarks on fixed point assertions in digital topology, 9
Submitted: 2024-10-01
|Accepted: 2025-01-13
|Published: 2025-04-01
Copyright (c) 2025 Laurence Boxer

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
digital topology, digital image, fixed point, digital metric space
Supporting agencies:
Abstract:
We continue a discussion of published assertions that are incorrect, incorrectly proven, or trivial, in the theory of fixed points in digital topology.
References:
T. A. Adeyemi, A review of f-contraction mapping on metric spaces, Bachelor Degree Project submitted to Department of Computer Science and Mathematics, Mountain Top University, Nigeria, 2021, 1-54.
K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202. https://doi.org/10.4064/fm-41-2-168-202
L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15, no. 8 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vision 24 (2) (2006), 167-175. https://doi.org/10.1007/s10851-005-3619-x
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 2, Appl. Gen. Topol. 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 3, Appl. Gen. Topol. 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 4, Appl. Gen. Topol. 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 5, Appl. Gen. Topol. 23, no. 2 (2022), 437-451. https://doi.org/10.4995/agt.2022.16655
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 6, Appl. Gen. Topol. 24, no. 2 (2023), 281-305. https://doi.org/10.4995/agt.2023.18996
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 7, Appl. Gen. Topol. 25, no. 1 (2024), 97-115. https://doi.org/10.4995/agt.2024.20026
L. Boxer, Remarks on Fixed Point Assertions in Digital Topology, 8, Appl. Gen. Topol. 25, no. 2 (2024), 457-473. https://doi.org/10.4995/agt.2024.21074
L. Boxer, O. Ege, I. Karaca, J. Lopez, and J. Louwsma, Digital fixed points, approximate fixed points, and universal functions, Appl. Gen. Topol. 17, no. 2 (2016), 159-172. https://doi.org/10.4995/agt.2016.4704
L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474
G. Chartrand and S. Tian, Distance in digraphs, Comput. Math. Appl. 34, no. 11 (1997), 15-23. https://doi.org/10.1016/S0898-1221(97)00216-2
S. Dalal, Common fixed point results for weakly compatible map in digital metric spaces, Sch. J. Phys. Math. Stat. 4, no. 4 (2017), 196-201.
O. Ege and I. Karaca, Digital homotopy fixed point theory, C. R. Math. 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006
O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl. 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
S.-E. Han, Non-product property of the digital fundamental group, Inf. Sci. 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl. 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19
S.-E. Han, Estimation of the complexity of a digital image from the viewpoint of fixed point theory, Appl. Math. Comput. 347 (2019), 236-248. https://doi.org/10.1016/j.amc.2018.10.067
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
C. R. Indrati, Fixed-point theorems involving Lipschitz in the small, Abstr. Appl. Anal. 2023, Article ID 5236150. https://doi.org/10.1155/2023/5236150
R. Kalaiarasia and R. Jain, Fixed point theory in digital topology, Int. J. Nonlinear Anal. Appl. 13 (2021), 157-163.
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proc. IEEE Int. Conf. Syst. Man Cybern. (1987), 227-234.
T. Y. Kong and A. Rosenfeld, Digital topology: introduction and survey, Comput. Vis. Graph. Image Process. 48 (1989), 357-393. https://doi.org/10.1016/0734-189X(89)90147-3
S. B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978.
S. Nawaz, M. K. Hassani, A. Batool, and A. Akgul, Stability of functional inequality in digital metric space, J. Inequal. Appl. 2024 (2024), 111. https://doi.org/10.1186/s13660-024-03179-1
A. Okwegye and A. S. Akyenyi, Bi-commutative digital contraction mapping and fixed point theorem on digital image and metric spaces, Dutse J. Pure Appl. Sci. 9 (3a) (2023), 237-245. https://doi.org/10.4314/dujopas.v9i3a.24
C. Park, O. Ege, S. Kumar, D. Jain, and J. R. Lee, Fixed point theorems for various contraction conditions in digital metric spaces, J. Comput. Anal. Appl. 26, no. 8 (2019), 1451-1458.
A. Rani, K. Jyoti, and A. Rani, Common fixed point theorems in digital metric spaces, Int. J. Sci. Eng. Res. 7, no. 12 (2016), 1704-1716. https://doi.org/10.51983/ajsat-2018.7.2.1035
S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14, no. 1 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognit. Lett. 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
A. S. Saluja, Weakly commutative mappings and common fixed-point theorem in digital metric space, Int. J. Sci. Res. 12, no. 5 (2023), 1869-1871. https://doi.org/10.21275/SR23522104238
A. S. Saluja and J. Jhade, Common fixed point theorems for commutative and weakly compatible mappings in digital metric space, J. Hyperstruct. 11, no. 2 (2022), 280-291. https://doi.org/10.47191/ijmcr/v11i5.09
A. S. Saluja and J. Jhade, Common fixed point theorem for weakly compatible mappings in digital metric space, Int. J. Math. Comput. Res. 11, no. 5 (2023), 3448-3450. https://doi.org/10.47191/ijmcr/v11i5.09
A. Shaheen, A. Batool, A. Ali, H. A. Sulami, and A. Hussain, Recent developments in iterative algorithms for digital metrics, Symmetry 16 (2024), 368. https://doi.org/10.3390/sym16030368
K. Sridevi, M. V. R. Kameswari, and D. M. K. Kiran, Fixed point theorems for digital contractive type mappings in digital metric spaces, Int. J. Math. Trends Tech. 48, no. 3 (2017), 159-167. https://doi.org/10.14445/22315373/IJMTT-V48P522
S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.



