Radicals in the class of compact right topological rings
DOI:
https://doi.org/10.4995/agt.2014.2230Keywords:
right topological ring, radical, left Noetherian topological ringAbstract
We construct in this article three radicals in the class of compact right topological rings. We prove also that a simple left Noetherian compact right topological ring is finite.
Downloads
References
M. Cioban, P. Soltan and C. Gaindric, Academician Vladimi Arnautov - 70th anniversary, Bul. Acad. Stiinte Repub. Mold., 3 (61) (2009), 118-124.
P. Halmos, Comment on the real line, Bull. Amer. Math. Soc. 50 (1944), 877-878. https://doi.org/10.1090/S0002-9904-1944-08255-4
N. Hindman, J. Pym and D. Strauss, Multiplications in additive compactifications of N and Z, Topology Appl. 131 (2003), 149-176. https://doi.org/10.1016/S0166-8641(02)00298-5
I. Kaplansky, Topological Rings, Amer. J. Math. 69, no. 1 (1957), 153-183. https://doi.org/10.2307/2371662
H. Leptin, Linear kompakte Moduln und Ringe, I, Math.Z. 62 (1955), 241-267. https://doi.org/10.1007/BF01180634
M. I. Ursul, Compact left topological rings, Scripta Scientarum Mathematicarum 1 (1997), 257-270.
D. Zelinsky, Raising idempotents, Duke Math. J. 21 (1954), 315-322. https://doi.org/10.1215/S0012-7094-54-02130-4
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.