Radicals in the class of compact right topological rings

Mihail Ursul, Adela Tripe

Abstract

We construct in this article three radicals in the class of compact right topological rings. We prove also that a simple left Noetherian compact right topological ring is finite.


Keywords

right topological ring; radical; left Noetherian topological ring.

Subject classification

16W80; 54HXX.

Full Text:

PDF

References

M. Cioban, P. Soltan and C. Gaindric, Academician Vladimi Arnautov - 70th anniversary, Bul. Acad. Stiinte Repub. Mold., 3 (61) (2009), 118-124.

P. Halmos, Comment on the real line, Bull. Amer. Math. Soc. 50 (1944), 877-878.

(http://dx.doi.org/10.1090/S0002-9904-1944-08255-4)

N. Hindman, J. Pym and D. Strauss, Multiplications in additive compactifications of N and Z, Topology Appl. 131 (2003), 149-176.

(http://dx.doi.org/10.1016/S0166-8641(02)00298-5)

I. Kaplansky, Topological Rings, Amer. J. Math. 69, no. 1 (1957), 153-183.

(http://dx.doi.org/10.1163/156853685X00625)

H. Leptin, Linear kompakte Moduln und Ringe, I, Math.Z. 62 (1955), 241-267.

(http://dx.doi.org/10.1007/BF01180634)

M. I. Ursul, Compact left topological rings, Scripta Scientarum Mathematicarum 1 (1997), 257-270.

D. Zelinsky, Raising idempotents, Duke Math. J. 21 (1954), 315-322.

(http://dx.doi.org/10.1215/S0012-7094-54-02130-4)

Abstract Views

3557
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt