Fixed points of Oslike contraction mapping: stability and convergence of a new iteration method
Submitted: 2024-08-12
|Accepted: 2025-01-20
|Published: 2025-04-01
Copyright (c) 2025 J. Grace Margrate Mary, R. Uthayakumar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
Banach space, fixed point method, strong convergence, T-stable, contraction mapping
Supporting agencies:
Abstract:
This work introduces a novel three-type iteration method for estimating the fixed point approximation for a contraction mapping in the context of Banach space. Furthermore, we present a stability finding for an iteration scheme, demonstrating the strong convergence of our new iteration scheme. In conclusion, we proved that our iteration runs faster than some other iterations previously documented in the literature. We also provide a numerical example using the computer application Matlab to support our claim.
References:
H. A. Abass, A. A. Mebawondu, and O. T. Mewomo, Some results for a new three steps iteration scheme in Banach spaces, Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science 1 (2018), 1-18.
V. Berinde, On the stability of some fixed point procedures, Buletinul stiintific al Universitatii Baia Mare, Seria B, Fascicola matematica-informatica 7 (2002), 7-14.
V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory and Applications 2004 (2004), 1-9. https://doi.org/10.1155/S1687182004311058
V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum 9 (2004), 43-54. https://doi.org/10.1155/S1687182004311058
V. Berinde and F. Takens, Iterative approximation of fixed points, Berlin: Springer 1912 (2007). https://doi.org/10.1109/SYNASC.2007.49
A. M. Harder, Fixed point theory and stability results for fixed point iteration procedures, elibrary.ru (1988).
C. O. Imoru and M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian Journal of Mathematics 155 (2003), 155-160.
S. Ishikawa, Fixed points by a new iteration method, Proceedings of the American Mathematical Society 44, no. 1 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
V. Kanwar, P. Sharma, I. K. Argyros, R. Behl, C. Argyros, A. Ahmadian, and M. Salimi, Geometrically constructed family of the simple fixed point iteration method, Mathematics 9, no. 6 (2021), 694. https://doi.org/10.3390/math9060694
V. Karakaya, Y. Atalan, K. Dogan, and N. E. H. Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, openaccess.artvin.edu.tr (2017).
W. R. Mann, Mean value methods in iteration, Proceedings of the American Mathematical Society 4, no. 3 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
A. A. Mebawondu and O. T. Mewomo, Fixed point results for a new three steps iteration process, Annals of the University of Craiova-Mathematics and Computer Science Series 46, no. 2 (2019), 298-319.
M. O. Osilike, Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14 (1995), 17-29.
B. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Methods & Applications 47, no. 4 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
P. Sharma, H. Ramos, R. Behl, and V. Kanwar, A new three-step fixed point iteration scheme with strong convergence and applications, Journal of Computational and Applied Mathematics 430 (2023), 115242. https://doi.org/10.1016/j.cam.2023.115242
B. S. Thakur, D. Thakur, and M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat 30, no. 10 (2016), 2711-2720. https://doi.org/10.2298/FIL1610711T
S. Thianwan, Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space, Journal of Computational and Applied Mathematics 224, no. 2 (2009), 688-695. https://doi.org/10.1016/j.cam.2008.05.051
K. Ullah and M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat 32, no. 1 (2018), 187-196. https://doi.org/10.2298/FIL1801187U
X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proceedings of the American Mathematical Society 113, no. 3 (1991), 727-731. https://doi.org/10.2307/2048608
T. Zamfirescu, Fix point theorems in metric spaces, Archiv der Mathematik 23 (1972), 292-298. https://doi.org/10.1007/BF01304884



