On the existence of best proximity points for generalized contractions
DOI:
https://doi.org/10.4995/agt.2014.2221Keywords:
Fixed points, Generalized contractions, $P$-property, best proximity point.Abstract
In this article we establish the existence of a unique best proximity point for some generalized non self contractions on a metric space in a simpler way using a geometric result. Our results generalize some recent best proximity point theorems and several fixed point theorems proved by various authors.Downloads
References
D. W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9
V. Sankar Raj and P. Veeramani, Best proximity pair theorems for relatively
nonexpansive mappings, Appl. General Topology 10 (2009), 21-28.
J. Anuradha and P. Veeramani, Proximal pointwise contraction, Topology Appl. 156 (2009), 2942-2948.
http://dx.doi.org/10.1016/j.topol.2009.01.017
A. Abkar and M. Gabeleh, Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl. 153 (2012), 298-305.
http://dx.doi.org/10.1007/s10957-011-9966-4
A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.
http://dx.doi.org/10.1016/j.jmaa.2005.10.081
A. Amini Harandi, Best proximity points for proximal generalized contractions in metric spaces, Optim Lett. 7 (2013), 913-921
http://dx.doi.org/10.1007/s11590-012-0470-z
W. A. Kirk, S. Reich and P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim. 24 (2003), 851-862.
http://dx.doi.org/10.1081/NFA-120026380
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
http://dx.doi.org/10.1007/978-0-387-21593-8
B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
http://dx.doi.org/10.1090/S0002-9947-1977-0433430-4
K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 122 (1969), 234-240
http://dx.doi.org/10.1007/BF01110225
W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), 433-446.
http://dx.doi.org/10.1016/j.jmaa.2005.04.053
W. K. Kim, S. Kum and K. H. Lee, On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear Anal. TMA 68 (2008), 2216-2227.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.