Fixed point property and degree of coincidence
Submitted: 2024-05-10
|Accepted: 2024-09-05
|Published: 2025-04-01
Copyright (c) 2024 Wladyslaw Kulpa, Andrzej A Szymanski, Marian Turzanski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
KKM function family, universal function, degree of coincidence, frame
Supporting agencies:
Abstract:
We introduce the concept of degree of coincidence to measure the divergence from the fixed point property in case a space does not have the FPP.
References:
R. Cauty, Solution du problème de point fixe de Schauder, Fundamenta. Mathematicae 170 (2001), 231-246. https://doi.org/10.4064/fm170-3-2
M. Dodson, A Brouwer type coincidence theorem and the fundamental theorem of algebra, Canadian Mathematical Bulletin 27 (1984), 478-480. https://doi.org/10.4153/CMB-1984-075-9
T. Fujimoto, N. G. A. Karunathilake, and R. Ranade, A proof of the Fundamental Theorem of Algebra via Reich's coincidence theorem and a reason why there exists no proof based on a simple application of Brouwer's fixed point theorem, Kagawa University Economic Review 89, no. 1 (2016), 1-13.
A. Granas, KKM-Maps, The Scottish Book; Mathematics from the Scottish Café with Selected Problems from the New Scottish Book, R. Mauldin ed., 2nd Edition, Birkhäuser, 2015; Chapter 5, 34-48. https://doi.org/10.1007/978-3-319-22897-6_5
A. Granas and J. Dugunji, Fixed point theory, Springer Monographs in Mathematics, 2003. https://doi.org/10.1007/978-0-387-21593-8
H. Hahn, Mengentheoretische Charakterisierung der stetigen Kurve, Sitzungsber. Akad. Wiss Wien 123 (1914), 2433-2489.
W. Holsztynski, Une generalization du theoreme de Brouwer sur les points invariants, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. et Physics 12 (1964), 602-607.
W. Holsztynski, Universal mappings and fixed point theorems,Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. et Physics 15 (1967), 421-426.
W. Holsztynski, A remark on the universal mappings of 1-dimensional continua, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. et Physics 15 (1967), 525-527.
A. Idzik, W. Kulpa, and P. Mackowiak, Equivalent forms of the Brouwer fixed point theorem II, Topological Methods in Nonlinear Analysis 57, no. 1 (2021), 57-71. https://doi.org/10.12775/TMNA.2020.036
B. Knaster, K. Kuratowski, and S. Mazurkiewicz, Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fundamenta Mathematicae (in German) 14 (1929), 132-137. https://doi.org/10.4064/fm-14-1-132-137
W. Kulpa, An integral criterion for coincidence property, Radovi Matematicki 6 (1990), 313-321.
W. Kulpa, Sandwich type theorems, Acta Universitatis Carolinae, Mathematica et Physica 35, no. 2 (1994), 45-52.
W. Kulpa, A. Szymanski, and M. Turzanski, Function and colorful extensions of the KKM theorem, Topological Methods in Nonlinear Analysis 56, no. 1 (2020), 313-324. https://doi.org/10.12775/TMNA.2020.015
K. Kuratowski, Introduction to set theory and topology, revised second English ed. Number 101 in International Series of Monographs in Pure and Applied Mathematics. Warsaw: Pergamon Press, 1972.
K. Kuratowski and H. Steinhaus, Une application géométrique du théorème de Brouwer sur les points invariant, Bulletin de L'Académie Polonaise des Sciences CLIII, no. 3-4 (1953), 83-86.
S. Mazurkiewicz, Sur les lignesde Jordan, Fundamenta Mathematicae 1 (1920), 166-209. https://doi.org/10.4064/fm-1-1-166-209
R. L. Moore, Concerning the cut-points of continuous curves and of other closed and connected point-sets, Proc. Natl. Acad. Sci. USA 161, no. 4 (1923), 101-106. https://doi.org/10.1073/pnas.9.4.101
S. Park, One hundred years of Brouwer's fixed point theorem, J. Nat. Acad. Sci. ROK 60, no. 1 (2021), 1-77.
S. Park, A history of the KKM theory, https://www.researchgate.net/publication/324388798.
H. Schimer, A Brouwer type coincidence theorem, Canadian Mathematical Bulletin 9 (1966), 443-446. https://doi.org/10.4153/CMB-1966-053-3
L.-G. Svensson, Large indivisibles: An analysis with respect to price equilibrium and fairness, Econometrica 51, no. 4 (1983), 939-954. https://doi.org/10.2307/1912044
M. Szymik, Homotopies and the universal fixed point property, Order 32 (2015), 301-311. https://doi.org/10.1007/s11083-014-9332-x