On some properties of $T_0$-ordered reflection
Submitted: 2014-02-17
|Accepted: 2014-02-17
|Published: 2014-04-01
Downloads
Keywords:
ordered topological space, T2−ordered, T1−ordered, T0 −ordered, ordered reflection, ordered quotient, category and functor.
Supporting agencies:
Abstract:
References:
A. Ayache, O. Echi, The envelope of a subcategory in Topology and group theory, Int. J. Math. Math. Sci. 21 (2005), 3787-3404.
K. Belaid, O. Echi and S. Lazaar, $T_{(alpha , beta )$-spaces and the Wallman compactification, Int. J. Math. Math. Sc. 68 (2004), 3717-3735.
(http://dx.doi.org/10.1155/S0161171204404050)
C. Casacuberta, A. Frei and G. C. Tan, Extending localization functors, J. Pure Appl. Algebra 103 (1995), 149-165.
(http://dx.doi.org/10.1016/0022-4049(94)00099-5)
A. Deleanu, A. Frei, and P. Hilton, Generalized Adams completion, Cah. Topologie Géom. Différ. Catég.15 (1974), 61-82.
R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcategories of presheaves, Theory Appl. Categ. 10 (2002), 410-423.
A. Frei, On completion and shape, Bol. Soc. Brasil. Mat. 5 (1974), 147-159.
(http://dx.doi.org/10.1007/BF02938487)
P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra, 2 (1972), 169-191. (http://dx.doi.org/10.1016/0022-4049(72)90001-1)
A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Springer-Verlag (1971).
J. M. Harvey, Reflective subcategories, Ill. J. Math. 29 (1985), 365-369.
H. Herrlich and G. Strecker, Categorical topology-Its origins as exemplified by the unfolding of the theory of topological reflections and coreflections before 1971, in Handbook of the History of General Topology, C.E. Aull and R. Lowen (eds.), Volume 1, Kluwer Academic Publishers, (1997), 255-341. (http://dx.doi.org/10.1007/978-94-017-0468-7_15)
H. Herrlich and G. Strecker, H-closed spaces and reflective subcategories, Math. Ann. 177 (1968), 302-309. (http://dx.doi.org/10.1007/BF01350722)
H-P. A. Künzi and T. A. Richmond, $T_i$-ordered reflections, Appl. Gen. Topol. 6, no. 2 (2005), 207-216.
H-P. A. Künzi, A. E. Mccluskey and T. A. Richmond, Ordered separation axioms and the Wallman ordered compactification, Publ. Math. Debrecen 73/3-4 (2008), 361-377.
S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. vol. 5, Springer-Verlag, New York, (1971). (http://dx.doi.org/10.1007/978-1-4612-9839-7)
W. Tholen, Reflective subcategories, Topology Appl. 27 (1987), 201-212.