Minimal TUD spaces

Authors

  • Aisling E. McCluskey National University of Ireland
  • W. S. Watson York University

DOI:

https://doi.org/10.4995/agt.2002.2112

Keywords:

Minimal topologies, Weak separation axioms

Abstract

A topological space is TUD if the derived set of each point is the union of disjoint closed sets. We show that there is a minimal TUD space which is not just the Alexandroff topology on a linear order. Indeed the structure of the underlying partial order of a minimal TUD space can be quite complex. This contrasts sharply with the known results on minimality for weak separation axioms.

Downloads

Download data is not yet available.

References

S.J. Andima and W.J. Thron, Order-induced topological properties, Pacific J. Math. (2) 75 (1978). https://doi.org/10.2140/pjm.1978.75.297

C.E. Aull and W.J. Thron, Separation axioms between T0 and T1, Indag. Math. 24 (1962), 26-37. https://doi.org/10.1016/S1385-7258(62)50003-6

V.K. Balachandran, Minimal bicompact spaces, J. Ind. Math. Soc. 12 (1948), 47-48.

B. Banaschewski, Über zwei Extramaleigenschaften topologischer Räume, Math. Nachr. 13 (1955), 141-150. https://doi.org/10.1002/mana.19550130303

M.P. Berri, Minimal topological spaces, Trans. Amer. Math. Soc. 108 (1963), 97-105. https://doi.org/10.1090/S0002-9947-1963-0150724-0

M.P. Berri, Categories of certain minimal topological spaces, J. Austral. Math. Soc. 3 (1964), 78-82. https://doi.org/10.1017/S1446788700022758

M.P. Berri, J.R. Porter and R.M. Stephenson Jr., A survey of minimal topological spaces, General Topology and its relation to modern analysis and algebra, Proc. Conference topology, Academic Press, New York (1970).

M.P. Berri and R.H. Sorgenfrey, Minimal regular spaces, Proc. Amer. Math. Soc. 14 (1963), 454-458. https://doi.org/10.1090/S0002-9939-1963-0152978-9

N. Bourbaki, Espaces minimaux et espaces complètement sèparèes, C. R. Acad. Sci. Paris 212 (1941), 215-218.

D.E. Cameron, Maximal and minimal topologies, Trans. Amer. Math. Soc. 160 (1971), 229-248. https://doi.org/10.1090/S0002-9947-1971-0281142-7

H. Herrlich, Tv-Abgeschlossenheit und Tv-Minimalität, Math. Z. 88 (1965), 285-294. https://doi.org/10.1007/BF01111687

R-E. Hoffmann, Essentially complete T0-spaces, Manuscripta Math. 27 (1979), 401-432. https://doi.org/10.1007/BF01507294

S. Ikenaga, Product of minimal topological spaces, Proc. Japan Acad. 40 (1964), 329-331. https://doi.org/10.3792/pja/1195522746

B. Johnston and S.D. McCartan, Minimal TF -spaces and minimal TFF -spaces, Proc. R. Ir. Acad. 80A (1980), 93-96.

B. Johnston and S.D. McCartan, Minimal TY S-spaces and minimal TDD-spaces, Proc. R. Ir. Acad. 88A (1988), 23-28.

H. Kawashima, On the topological product of minimal Hausdorff spaces, TRU Math. 1 (1965), 62-64.

D.C. Kent and G.D. Richardson, Minimal convergence spaces, Trans. Amer. Math. Soc. 160 (1971), 487-500. https://doi.org/10.1090/S0002-9947-1971-0286063-1

S.M. Kim, Quasi-compact spaces and topological products of minimal Hausdorff spaces, Kyungpook Math. J. 6 (1965), 49-52.

R.E. Larson, Minimal T0-spaces and minimal TD-spaces, Pac. J. Math. 31 (1969), 451-458. https://doi.org/10.2140/pjm.1969.31.451

R.E. Larson, Minimum and maximum topological spaces, Notices Amer. Math. Soc. 16 (1969), 347. Bull. Polish Acad. Sci. 18 (1970), 707-710.

S.D. McCartan, Minimal TES-spaces and minimal TEF -spaces, Proc. R. Ir. Acad. 79A (1979), 11-13.

A.E. McCluskey and S.D. McCartan, The minimal structures for TA, Ann. New York Acad. Sci. 659 (1992), 138-155. https://doi.org/10.1111/j.1749-6632.1992.tb32257.x

A.E. McCluskey and S.D. McCartan, Minimality with respect to Youngs' axiom, Houston J. Math. 21 (1995), 413-428.

A.E. McCluskey and S.D. McCartan, Minimality with respect to TSA and TSD, Top. with Applications, Szekszard (Hungary), (1993), 83-97.

A.E. McCluskey and S.D. McCartan, Minimality structures for TFA, Rend. dell' Istituto di Matematica dell' Università di Trieste, 27 (1995), 11-24.

Ki-Hyun Pahk, Note on the characterizations of minimal T0 and TD spaces, Kyungpook Math. J. 8 (1968), 5-10.

A.S. Parhomenko,Über eineindeutige stetige Abbildungen, Mat. Sb. 5 47 (1939), 197-210.

J.R. Porter, Minimal first countable spaces, Bull. Austral. Math. Soc. 3 (1970), 55-64. https://doi.org/10.1017/S0004972700045640

J.R. Porter and J.P. Thomas, On H-closed and minimal-Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159-170. https://doi.org/10.2307/1994905

T.G. Raghavan and I.L. Reilly, On minimal Hausdorff first countable spaces, Ind. J. Pure and App. Math. 14 2 (1983), 244-252.

A. Ramanathan, A characterization of maximal-Hausdorff spaces, J. Indian Math. Soc. 11 (1947), 73-80. https://doi.org/10.1007/BF03170946

A. Ramanathan, Maximal Hausdorff spaces, Proc. Indian Acad. Sci. Sec. A 26 (1947), 31-42. https://doi.org/10.1007/BF03170946

A. Ramanathan, Minimal-bicompact spaces, J. Indian Math. Soc. 12 (1948), 40-46.

C.T. Scarborough, Minimal Urysohn spaces, Pac. J. Math. 27 (1968), 611-618. https://doi.org/10.2140/pjm.1968.27.611

C.T. Scarborough and R.M. Stephenson Jr., Minimal topologies, Colloq. Math. 19 (1968), 215-219. https://doi.org/10.4064/cm-19-2-215-219

N. Smythe and C.A. Wilkins, Minimal Hausdorff and maximal compact spaces, J. Austral. Math. Soc. 3 (1963), 167-171. https://doi.org/10.1017/S1446788700027907

R.M. Stephenson Jr., Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115-128. https://doi.org/10.1090/S0002-9947-1969-0238261-1

R.M. Stephenson Jr., Minimal first countable Hausdorff spaces, Pac. J. Math. 36 (1971), 821-828. https://doi.org/10.2140/pjm.1971.36.819

W.J.Thron and S.J. Zimmerman, A characterization of order-topologies by means of minimal T0-topologies, Proc. Amer. Math. Soc. 27 (1971), 161-167. https://doi.org/10.2307/2037281

H. Tong, Minimal bicompact spaces, Bull. Amer. Math. Soc. 54 (1948), 478-479. https://doi.org/10.1090/S0002-9904-1948-09103-0

J. Vermeer, Embeddings in minimal Hausdorff spaces, Proc. Amer. Math. Soc. 87 (1983), 533-535. https://doi.org/10.1090/S0002-9939-1983-0684652-7

G. Vigilino, A co-topological application to minimal spaces, Pac. J. Math. 27 (1969), 197-200. https://doi.org/10.2140/pjm.1968.27.197

Downloads

Published

2002-04-01

How to Cite

[1]
A. E. McCluskey and W. S. Watson, “Minimal TUD spaces”, Appl. Gen. Topol., vol. 3, no. 1, pp. 55–64, Apr. 2002.

Issue

Section

Regular Articles