A contribution to fuzzy subspaces

Miguel Alamar

Spain

Universitat Politècnica de València

Dep. de Matematica Aplicada

Escuela Politecnica Superior de Gandia

Vicente D. Estruch

Spain

Universitat Politècnica de València

Dep. de Matematica Aplicada

Escuela Politecnica Superior de Gandia

|

Accepted: 2014-01-27

|

Published: 2002-04-01

DOI: https://doi.org/10.4995/agt.2002.2107
Funding Data

Downloads

Keywords:

Fuzzy connectedness, Fuzzy topology, Q-neighborhood

Supporting agencies:

UPV

"Incentivo a la Investigación/99"

Abstract:

We give a new concept of fuzzy topological subspace, which extends the usual one, and study in it the related concepts of interior, closure and conectedness.

Show more Show less

References:

C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7

D. R. Cuttler, I.L. Reilly, A comparison of some Haussdorf notions in fuzzy topological spaces, Computers Math. Applic., Vol. 19, N. 11, (1990) 97-104. https://doi.org/10.1016/0898-1221(90)90152-A

Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4

W. Guojun, A new fuzzy compactness defined by fuzzy sets, J. Math. Anal. Appl. 94 (1983), 1-23. https://doi.org/10.1016/0022-247X(83)90002-1

P.M. Pu, Y.M. Liu, Fuzzy Topology. I: Neighborhood stucture of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7

P.M. Pu, Y.M. Liu, Fuzzy topology. II: Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37. https://doi.org/10.1016/0022-247X(80)90258-9

A.P. Shostak, Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Surveys, 44: 6 (1989), 125-186.

https://doi.org/10.1070/RM1989v044n06ABEH002295

Show more Show less