A contribution to fuzzy subspaces
Submitted: 2014-01-27
|Accepted: 2014-01-27
|Published: 2002-04-01
Downloads
Keywords:
Fuzzy connectedness, Fuzzy topology, Q-neighborhood
Supporting agencies:
UPV
"Incentivo a la Investigación/99"
Abstract:
We give a new concept of fuzzy topological subspace, which extends the usual one, and study in it the related concepts of interior, closure and conectedness.
References:
C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
D. R. Cuttler, I.L. Reilly, A comparison of some Haussdorf notions in fuzzy topological spaces, Computers Math. Applic., Vol. 19, N. 11, (1990) 97-104. https://doi.org/10.1016/0898-1221(90)90152-A
Z. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95. https://doi.org/10.1016/0022-247X(82)90255-4
W. Guojun, A new fuzzy compactness defined by fuzzy sets, J. Math. Anal. Appl. 94 (1983), 1-23. https://doi.org/10.1016/0022-247X(83)90002-1
P.M. Pu, Y.M. Liu, Fuzzy Topology. I: Neighborhood stucture of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7
P.M. Pu, Y.M. Liu, Fuzzy topology. II: Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37. https://doi.org/10.1016/0022-247X(80)90258-9
A.P. Shostak, Two decades of fuzzy topology: basic ideas, notions and results, Russian Math. Surveys, 44: 6 (1989), 125-186.