Existence of fixed points of large MR-Kannan contractions in Banach Spaces
Submitted: 2023-12-08
|Accepted: 2024-05-15
|Published: 2024-10-01
Copyright (c) 2024 Rizwan Anjum, Mujahid Abbas, Muhammad Waqar Akram, Stojan Radenović

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Keywords:
Kannan contraction, enriched Kannan, large Kannan, MR Kannan contractions
Supporting agencies:
Abstract:
The purpose of this paper is to introduce the class of large MR-Kannan contractions on Banach space that contains the classes of Kannan, enriched Kannan, large Kannan, MR-Kannan contractions and some other classes of nonlinear operators. Some examples are presented to support the concepts introduced herein. We prove the existence of a unique fixed point for such a class of operators in Banach spaces.
References:
M. Abbas, R. Anjum, and V. Berinde, Equivalence of certain iteration processes obtained by two new classes of operators, Mathematics 9, no. 18 (2021), 2292. https://doi.org/10.3390/math9182292
M. Abbas, R. Anjum, and V. Berinde, Enriched multivalued contractions with applications to differential inclusions and dynamic programming, Symmetry 13, no. 8 (2021), 1350. https://doi.org/10.3390/sym13081350
M. Abbas, R. Anjum, and H. Iqbal, Generalized enriched cyclic contractions with application to generalized iterated function system, Chaos, Solitons and Fractals 154 (2022), 111591. https://doi.org/10.1016/j.chaos.2021.111591
M. Abbas, R. Anjum, and S. Riasat, Fixed point results of enriched interpolative Kannan type operators with applications, Appl. Gen. Topol. 23, no. 2 (2022), 391-404. https://doi.org/10.4995/agt.2022.16701
R. Anjum and M. Abbas, Common Fixed point theorem for modified Kannan enriched contraction pair in Banach spaces and its applications, Filomat 35, no. 8 (2021), 2485-2495. https://doi.org/10.2298/FIL2108485A
R. Anjum, M. Abbas, and H. Işık, Completeness problem via fixed point theory, Complex Anal. Oper. Theory 17 (2023), 85. https://doi.org/10.1007/s11785-023-01385-1
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta mathematicae 3, no. 1 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
J. B. Baillon, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.
R. Batra, R. Gupta, and P. Sahni, A new extension of Kannan contractions and related fixed point results, The Journal of Analysis 28 (2020), 1143-1154. https://doi.org/10.1007/s41478-020-00241-1
V. Berinde, and M. Păcurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, Journal of Computational and Applied Mathematics 386 (2020), 377-427. https://doi.org/10.1016/j.cam.2020.113217
V. Berinde, and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, Journal of Fixed Point Theory and Applications 22 (2020), 1-10. https://doi.org/10.1007/s11784-020-0769-9
V. Berinde, and M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian Journal of Mathematics 37, no. 2 (2021), 173-184. https://doi.org/10.37193/CJM.2021.02.03
V. Berinde, and M. Păcurar, Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces, Journal of Fixed Point Theory and Applications 22 (2021), 1-16. https://doi.org/10.1007/s11784-020-0769-9
V. Berinde, and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, Journal of Fixed Point Theory and Applications 22 (2020), 1-10. https://doi.org/10.1007/s11784-020-0769-9
A. Dehici, M. B. Mesmouli, and E. Karapinar, On the fixed points of large-Kannan contraction mappings and applications, Applied Mathematics E-Notes 19 (2019), 535-551.
J. Górnicki, Various extensions of Kannan's fixed point theorem, Journal of Fixed Point Theory and Applications 20, no. 1 (2018), 1-12. https://doi.org/10.1007/s11784-018-0500-2
N. Haokip, and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones (Antofagasta) 38, no. 4 (2019), 763-782. https://doi.org/10.22199/issn.0717-6279-2019-04-0050
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437
E. Karapinar, Revisiting the Kannan type contractions via interpolation, Advances in the Theory of Nonlinear Analysis and its Application 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135
E. Karapinar, R. Agarwal, and H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), 256. https://doi.org/10.3390/math6110256
E. Karapinar, O. Alqahtani, and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11, no. 1 (2018), 8. https://doi.org/10.3390/sym11010008
S. K. Malhotra, J. B. Sharma, and S. Shukla, Fixed points of generalized Kannan type α-admissible mappings in cone metric spaces with Banach algebra, Theory and Applications of Mathematics and Computer Science 7, no. 1 (2017), 1.
A. Petrusel, and I. A. Rus, An abstract point of view on iterative approximation schemes of fixed points for multivalued operators, J. Nonlinear Sci. Appl. 6, no. 2 (2013), 97-107. https://doi.org/10.22436/jnsa.006.02.05
E. Rakotch, A note on contractive mappings, Proceedings of the American Mathematical Society 13, no. 3 (1962), 459-465. https://doi.org/10.1090/S0002-9939-1962-0148046-1
M. Rossafi, and H. Massit, Some fixed point theorems for generalized Kannan type mappings in rectangular b-metric spaces, Nonlinear Funct. Anal. Appl. 27 (2022), 663-677.
I. A. Rus, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory 13, no. 1 (2012), 179-192.