Existence of fixed points of large MR-Kannan contractions in Banach Spaces
DOI:
https://doi.org/10.4995/agt.2024.20852Keywords:
Kannan contraction, enriched Kannan, large Kannan, MR Kannan contractionsAbstract
The purpose of this paper is to introduce the class of large MR-Kannan contractions on Banach space that contains the classes of Kannan, enriched Kannan, large Kannan, MR-Kannan contractions and some other classes of nonlinear operators. Some examples are presented to support the concepts introduced herein. We prove the existence of a unique fixed point for such a class of operators in Banach spaces.
Downloads
References
M. Abbas, R. Anjum, and V. Berinde, Equivalence of certain iteration processes obtained by two new classes of operators, Mathematics 9, no. 18 (2021), 2292. https://doi.org/10.3390/math9182292
M. Abbas, R. Anjum, and V. Berinde, Enriched multivalued contractions with applications to differential inclusions and dynamic programming, Symmetry 13, no. 8 (2021), 1350. https://doi.org/10.3390/sym13081350
M. Abbas, R. Anjum, and H. Iqbal, Generalized enriched cyclic contractions with application to generalized iterated function system, Chaos, Solitons and Fractals 154 (2022), 111591. https://doi.org/10.1016/j.chaos.2021.111591
M. Abbas, R. Anjum, and S. Riasat, Fixed point results of enriched interpolative Kannan type operators with applications, Appl. Gen. Topol. 23, no. 2 (2022), 391-404. https://doi.org/10.4995/agt.2022.16701
R. Anjum and M. Abbas, Common Fixed point theorem for modified Kannan enriched contraction pair in Banach spaces and its applications, Filomat 35, no. 8 (2021), 2485-2495. https://doi.org/10.2298/FIL2108485A
R. Anjum, M. Abbas, and H. Işık, Completeness problem via fixed point theory, Complex Anal. Oper. Theory 17 (2023), 85. https://doi.org/10.1007/s11785-023-01385-1
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta mathematicae 3, no. 1 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
J. B. Baillon, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.
R. Batra, R. Gupta, and P. Sahni, A new extension of Kannan contractions and related fixed point results, The Journal of Analysis 28 (2020), 1143-1154. https://doi.org/10.1007/s41478-020-00241-1
V. Berinde, and M. Păcurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, Journal of Computational and Applied Mathematics 386 (2020), 377-427. https://doi.org/10.1016/j.cam.2020.113217
V. Berinde, and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, Journal of Fixed Point Theory and Applications 22 (2020), 1-10. https://doi.org/10.1007/s11784-020-0769-9
V. Berinde, and M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian Journal of Mathematics 37, no. 2 (2021), 173-184. https://doi.org/10.37193/CJM.2021.02.03
V. Berinde, and M. Păcurar, Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces, Journal of Fixed Point Theory and Applications 22 (2021), 1-16. https://doi.org/10.1007/s11784-020-0769-9
V. Berinde, and M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, Journal of Fixed Point Theory and Applications 22 (2020), 1-10. https://doi.org/10.1007/s11784-020-0769-9
A. Dehici, M. B. Mesmouli, and E. Karapinar, On the fixed points of large-Kannan contraction mappings and applications, Applied Mathematics E-Notes 19 (2019), 535-551.
J. Górnicki, Various extensions of Kannan's fixed point theorem, Journal of Fixed Point Theory and Applications 20, no. 1 (2018), 1-12. https://doi.org/10.1007/s11784-018-0500-2
N. Haokip, and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones (Antofagasta) 38, no. 4 (2019), 763-782. https://doi.org/10.22199/issn.0717-6279-2019-04-0050
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76. https://doi.org/10.2307/2316437
E. Karapinar, Revisiting the Kannan type contractions via interpolation, Advances in the Theory of Nonlinear Analysis and its Application 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135
E. Karapinar, R. Agarwal, and H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), 256. https://doi.org/10.3390/math6110256
E. Karapinar, O. Alqahtani, and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11, no. 1 (2018), 8. https://doi.org/10.3390/sym11010008
S. K. Malhotra, J. B. Sharma, and S. Shukla, Fixed points of generalized Kannan type α-admissible mappings in cone metric spaces with Banach algebra, Theory and Applications of Mathematics and Computer Science 7, no. 1 (2017), 1.
A. Petrusel, and I. A. Rus, An abstract point of view on iterative approximation schemes of fixed points for multivalued operators, J. Nonlinear Sci. Appl. 6, no. 2 (2013), 97-107. https://doi.org/10.22436/jnsa.006.02.05
E. Rakotch, A note on contractive mappings, Proceedings of the American Mathematical Society 13, no. 3 (1962), 459-465. https://doi.org/10.1090/S0002-9939-1962-0148046-1
M. Rossafi, and H. Massit, Some fixed point theorems for generalized Kannan type mappings in rectangular b-metric spaces, Nonlinear Funct. Anal. Appl. 27 (2022), 663-677.
I. A. Rus, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory 13, no. 1 (2012), 179-192.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rizwan Anjum, Mujahid Abbas, Muhammad Waqar Akram, Stojan Radenović
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.