Finite approximation of stably compact spaces

M.B. Smyth, J. Webster


Finite approximation of spaces by inverse sequences of graphs (in the category of so-called topological graphs) was introduced by Smyth, and developed further. The idea was subsequently taken up by Kopperman and Wilson, who developed their own purely topological approach using inverse spectra of finite T0-spaces in the category of stably compact spaces. Both approaches are, however, restricted to the approximation of (compact) Hausdorff spaces and therefore cannot accommodate, for example, the upper space and (multi-) function space constructions. We present a new method of finite approximation of stably compact spaces using finite stably compact graphs, which when the topology is discrete are simply finite directed graphs. As an extended example, illustrating the problems involved, we study (ordered spaces and) arcs.


Stably compact space; Inverse limit; Upper space; (multi-) Function space; Linearly ordered space

Full Text:


Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A spatial view of information
Jonathan Gratus, Timothy Porter
Theoretical Computer Science  vol: 365  issue: 3  first page: 206  year: 2006  
doi: 10.1016/j.tcs.2006.07.051

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147