Common fixed point theorems on complete and weak G-complete fuzzy metric spaces

Authors

DOI:

https://doi.org/10.4995/agt.2024.20590

Keywords:

Common fixed point, Fuzzy metric space, Weak G-complete

Abstract

Motivated by Gopal and Vetro, we introduce a symmetric pair of β-admissible mappings and obtain common fixed point theorems for such a pair in complete and weak G-complete fuzzy metric spaces. In particular, we rectified, generalize and improve the common fixed point theorem obtained by Turkoglu and Sangurlu for two fuzzy ψ-contractive mappings. We include non-trivial examples to exhibit the generality and demonstrate our results.

Downloads

Download data is not yet available.

Author Biographies

Sugata Adhya, The Bhawanipur Education Society College

Department of Mathematics

A. Deb Ray, University of Calcutta

Department of Pure Mathematics

References

S. Adhya and A. Deb Ray, On weak G-completeness for fuzzy metric spaces, Soft Comput. 22, no. 5 (2022), 2099-2105. https://doi.org/10.1007/s00500-021-06632-1

S. Adhya and A. Deb Ray, Some properties of Lebesgue fuzzy metric spaces, Sahand Commun. Math. Anal. 18, no. 1 (2021), 1-14.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst. 64, no. 3 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7

D. Gopal and C. Vetro, Some new fixed point theorems in fuzzy metric spaces, Iran. J. Fuzzy Syst. 11, no. 3 (2014), 95-107.

M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst. 27, no. 3 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4

V. Gregori, J. J. Miñana and S. Morillas, Some questions in fuzzy metric spaces, Fuzzy Set. Syst. 204 (2012), 71-85. https://doi.org/10.1016/j.fss.2011.12.008

V. Gregori, J. J. Miñana and A. Sapena, On Banach contraction principles in fuzzy metric spaces, Fixed Point Theory 19, no. 1 (2018), 235-248. https://doi.org/10.24193/fpt-ro.2018.1.19

V. Gregori, and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Set. Syst. 125, no. 2 (2002), 245-252. https://doi.org/10.1016/S0165-0114(00)00088-9

V. Istrăţescu, An introduction to theory of probabilistic metric spaces, with applications. Ed, Tehnica, Bucurest, 1974.

I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11, no. 5 (1975), 336-344.

K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28, no. 12 (1942), 535. https://doi.org/10.1073/pnas.28.12.535

D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst. 159, no. 6 (2008), 739-744. https://doi.org/10.1016/j.fss.2007.07.006

H. Sherwood, On the completion of probabilistic metric spaces, Z. Wahrsch. verw. Geb. 6, no. 1 (1966), 62-64. https://doi.org/10.1007/BF00531809

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10, no. 1 (1960), 313-334. https://doi.org/10.2140/pjm.1960.10.313

D. Turkoglu and M. Sangurlu, Fixed point theorems for fuzzy ψ-contractive mappings in fuzzy metric spaces, J. Intell. Fuzzy Syst. 26, no. 1 (2014), 137-142. https://doi.org/10.3233/IFS-120721

C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Set. Syst. 162, no. 1 (2011), 84-90. https://doi.org/10.1016/j.fss.2010.09.018

Downloads

Published

2024-04-02

How to Cite

[1]
S. Adhya and A. Deb Ray, “Common fixed point theorems on complete and weak G-complete fuzzy metric spaces”, Appl. Gen. Topol., vol. 25, no. 1, pp. 17–34, Apr. 2024.

Issue

Section

Regular Articles