Strengthening connected Tychonoff topologies
DOI:
https://doi.org/10.4995/agt.2002.2058Keywords:
Connected, Strongly σ-discrete, Submetrizable, Regular open set, Dense subset, Topological group, Quotient group, Free topological groupAbstract
The problem of whether a given connected Tychonoff space admits a strictly finer connected Tychonoff topology is considered. We show that every Tychonoff space X satisfying ω (X) ≤ c and c (X) ≤ N0 admits a finer strongly σ-discrete connected Tychonoff topology of weight 2c. We also prove that every connected Tychonoff space is an open continuous image of a connected strongly σ-discrete submetrizable Tychonoff space. The latter result is applied to represent every connected topological group as a quotient of a connected strongly σ-discrete submetrizable topological group.
Downloads
References
O.T Alas, M. Sanchis, M.G. Tkachenko, V.V. Tkachuk and R.G. Wilson, Irresolvable and submaximal spaces: homogeneity vs σ-discreteness and new ZFC examples, Topology Appl. 107 (2000), 259-273. http://dx.doi.org/10.1016/S0166-8641(99)00111-X
O. Alas, M. Tkachenko, V. Tkachuk and R. Wilson, Connectedness and local connectedness of topological groups and extensions, Comment. Math. Univ. Carolinae 40 (1999), 735-753
O. Alas, M. Tkachenko, V. Tkachuk , R. Wilson and I. Yaschenko, On dense subspaces satisfying stronger separation axioms, Czech Math. J. 51 (2001), 15-28 http://dx.doi.org/10.1023/A:1013741402093
A.V. Arhangelskii, On mappings related to topological groups, Dokl. AN SSSR 181 (1968), 1303-1306
A.V. Arhangelskii, Classes of topological groups, Uspekhy Mat. Nauk 36 (1981), 127-146. English translat. In: Russian Math. Surveys 36 (1981), 151-174
A.V. Arhangelskii and P.J. Collins, On submaximal spaces, Topology Appl. 64 (1995), 219-241. http://dx.doi.org/10.1016/0166-8641(94)00093-I
A.V. Arhangelskii and V.I. Ponomarev, Fundamentals of General Topology, Problems and Exercises, Reidel P.C., Dordrecht, 1984.
L. Bukovsky, The continuum problem and the powers of alephs, Comment. Math. Univ. Carolin. 6 (1965), 181-197.
A.G. Elkin, Ultrafilters ans indecomposable spaces, Moscow Univ. Math. Bull. 24 (1969), nº 5, 37-40.
R. Engelking, General Topology, PWN, Warszawa, 1977.
M. I. Graev, Free topological groups, In: Topology and Topological Algebra, Translations Series 1, vol. 8 (1962), pp. 305-364. American Mathematical Society. Russian original in: Izvestiya Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-323.
J.A. Guthrie and H.E. Stone, Spaces whose connected expansions preserve connected subsets, Fund. Math. 80 (1973), 91-100.
J.A. Guthrie, H.E. Stoneand M.L. Wage, Maximal connected expansions of the reals, Proc. Amer. Math. Soc. 69 (1978), 159-165. http://dx.doi.org/10.1090/S0002-9939-1978-0467646-4
E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309-333. http://dx.doi.org/10.1215/S0012-7094-43-01029-4
I. Juhasz, Cardianl functions in topology, Math. Centre Tracts 34, North Holland, Amsterdam 1974.
B. E. Shapirovskii, Regular open sets and the character. Density and weight in bicompacta, Dokl. AN SSSR 218 (1974), 58-61.
D. Shakhmatov, M. Tkachenko, V. Tkachuk, S. Watson and R. Wilson, Neither first countable nor Cech-complete spaces are maximal Tychonoff connected, Pro. Amer. Math. Soc. 126 (1998), 279-287. http://dx.doi.org/10.1090/S0002-9939-98-04203-8
P. Simon, An example of a maximal connected Hausdorff space, Fund. Math. 100 (1978), 157-163.
J.P. Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700-705. http://dx.doi.org/10.1017/S1446788700006510
V. Tkachuk, When do connected spaces have nice connected preimages? Proc. Amer. Math. Soc. 126 (1998), 3437-3446. http://dx.doi.org/10.1090/S0002-9939-98-04476-1
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.