On some questions on selectively highly divergent spaces

Angelo Bella

Italy

University of Catania image/svg+xml

Dipartimento di Matematica e Informatica

Santi Spadaro

https://orcid.org/0000-0001-5880-8799

Italy

Università di Palermo image/svg+xml

Dipartimento di Ingegneria

|

Accepted: 2023-10-30

|

Published: 2024-04-02

DOI: https://doi.org/10.4995/agt.2024.20387
Funding Data

Downloads

Keywords:

Convergent sequences, Splitting number, Stone-Cech compactification, Selectively highly divergent spaces, Pixley-Roy hyper-space

Supporting agencies:

This research was not funded

Abstract:

A topological space X is selectively highly divergent (SHD) if for every sequence of non-empty open sets { Un : n ∈ ω } of X, we can find xn ∈ Un such that the sequence {xn : n ∈ ω } has no convergent subsequences. In this note we answer two questions related to this notion asked by Jiménez-Flores, Ríos-Herrejón, Rojas-Sánchez and Tovar-Acosta.

Show more Show less

References:

E. K. van Douwen, Applications of maximal topologies, Topology Appl. 51 (1993), 125-140. https://doi.org/10.1016/0166-8641(93)90145-4

E. K. van Douwen, The Integers and Topology, Handbook of Set-theoretic Topology (K. Kunen and J. E. Vaughan Editors), Elsevier Science Publishers B.V., Amsterdam (1984), 111-167. https://doi.org/10.1016/B978-0-444-86580-9.50006-9

R. Engelking, General Topology, Sigma Series in Pure Mathematics 6 Berlin: Heldermann Verlag, 1989.

C. D. Jimenez-Flores, A. Rios-Herrejon, A. D. Rojas-Sanchez and E. E. Tovar-Acosta, On selectively highly divergent spaces, ArXiv:2307.11992.

K. Kunen, Set Theory, Studies in Logic (London) 34. London: College Publications viii, 401 p. (2011).

Show more Show less