Developable hyperspaces are metrizable

L'Ubica Holá, Jan Pelant, László Zsilinszky


Developability of hyperspace topologies (locally finite, (bounded) Vietoris, Fell, respectively) on the nonempty closed sets is characterized. Submetrizability and having a Gδ-diagonal in the hyperspace setting is also discussed.


Developable spaces; Vietoris topology; Fell topology; Locally finite topology; Bounded Vietoris topology; Gδ-diagonal

Full Text:



H. Attouch, Variational convergence for functions and operators, Pitman, Boston (1984).

G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht (1993).

G. Beer, On the Fell Topology, Set-Valued Anal.1 (1993), 69-80.

G. A. Beer, C. J. Himmelberg, K. Prikry and F. S. Van Vleck, The locally finite topology on 2X, Proc. Amer. Math. Soc.101 (1987), 168-172.

G. Beer, A. Lechicki, S. Levi and S. Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) 162 (1992), 367-381.

H. Brandsma, Monolithic Hyperspaces; PhD. Thesis, Vrije Universiteit, Amsterdam (1998).

H. Brandsma and J. van Mill, Monotonically normal hyperspaces are metrisable.

M. Coban, Note sur topologie exponentielle, Fundam. Math.71 (1971), 27-42.

G. Di Maio, L'. Holá and J. Pelant, Properties related to the first countability of hyperspace topologies, Questions and Answers in General Topology 19 (2001), 139-157.

G. Di Miao and L'. Holá, On hit-and-miss topologies, Rend. Acc. Sc. Fis. Mat. Napoli 62 (1995), 103-124.

R. Engelking, General Topology, Helderman, Berlin (1989).

V. V. Fedorchuk, On some geometric properties of functors, Rend. Circ. Mat. Palermo (2) Suppl. 24 (1990), 73-78.

S. Fisher, P. Gartside, T. Mizokami and N. Shimane, Near metric properties of hyperspaces, Topol. Proc. 22 (1997), 197-211 .

S. L. Gulden, W. M. Fleischman and J. H. Weston, Linearly Ordered Topological Spaces, Proc. Amer. Math. Soc. 24 (1970), 760-766.

G. Gruenhage, Generalized metric spaces, in Handbook of Set-Theoretic topology edited by K. Kunen and J. Vaughan (1984), 423-501.

L'. Holá and S. Levi, Decomposition Properties of Hyperspace Topologies, Set-Valued Anal. 5 (1997), 309-321.

L'. Holá, S. Levi and J. Pelant, Normality and paracompactnees of the Fell topology, Proc. Amer. Math. Soc. 127 (1999), 2193-2197.

L'. Holá and H.P. Künzi, Properties related to compactness in hyperspaces, Topology Proceedings 23 (1998), 191-205.

J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760-766.

J. Keesling, On the equivalence of normality and compactness in hyperspaces, Pacific J. Math. 33 (1970), 657-667.

G. Matheron, Random sets and integral geometry, Wiley, New York (1975)

E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.

T. Mizokami, Hyperspaces of a Moore space and a d-paracompact space, Glas. Mat. 30 (1995), 69-72.

T. Mizokami, On hyperspaces of spaces around Moore spaces, Houston J. Math. 22 (1996), 297-306 .

S. A. Naimpally and P. L. Sharma, Fine uniformity and the locally finite hyperspace topology, Proc. Amer. Math. Soc. 103 (1988), 641-646.

V. Popov, On the subspaces of expX, in: Colloquia Mathematica, Soc. J. B_olyai, Budapest 103 (1978), 977-984.

N. V. Velichko, On spaces of closed subsets, Sib. Math. J. 16 (1975), 484-486.

L. Zsilinszky, Topological games and hyperspace topologies, Set-Valued Anal. 6 (1998), 187- 207 .

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147