Locally convex approach spaces

Authors

  • M. Sioen Free University of Brussels
  • S. Verwulgen Universiteit Antwerpen

DOI:

https://doi.org/10.4995/agt.2003.2031

Keywords:

Approach vector space, Topological vector space, Locally convex space, Locally convex approach space, Minkowski functional, Minkowski system, Projective tensor product

Abstract

We continue the investigation of suitable structures for quantified functional analysis, by looking at the notion of local convexity in the setting of approach vector spaces as introduced in [6]. We prove that the locally convex objects are exactly the ones generated (in the usual approach sense) by collections of seminorms. Furthermore, we construct a quantified version of the projective tensor product and show that the locally convex objects admitting a decent exponential law with respect to it are precisely the seminormed spaces.

Downloads

Download data is not yet available.

Author Biographies

M. Sioen, Free University of Brussels

Departement Wiskunde

S. Verwulgen, Universiteit Antwerpen

Departement Wiskunde-Informatica

References

Adámek J., Herrlich H. and Strecker G., Abstract and concrete categories, J. Wiley and Sons, 1990.

Borceux F. Handbook of Categorical Algebra, Vol. I,II,III, Encyclopedia of Math. And its Appl., Cambridge University Press, 1996.

Bourbaki N. Eléments de mathématique, livre V, Espaces Vectoriels Topologiques, Hermann, Paris 1964.

Grothendieck A. Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math Soc. 16,1955.

Lowen R. and Sioen M. Approximations in Functional Analysis, Result. Math. 37 (2000) 345-372. http://dx.doi.org/10.1007/BF03322005

Lowen R. and Verwulgen S. Approach Vector Spaces, submitted.

Lowen R. and Windels B. Approach groups, Rocky Mountain J. of Math 30(3) (2000) 1057-1074. http://dx.doi.org/10.1216/rmjm/1021477259

Lowen R. Approach spaces A common Supercategory of TOP and Met, Math. Nachr. 141 (1989) 183-226. http://dx.doi.org/10.1002/mana.19891410120

Lowen R. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press, 1997.

Mac Lane S. Categories for the working mathematician, Springer 1997.

Pumplün D. and Röhrl H. Banach Spaces and Totally Convex Spaces I, Communications in algebra, 12(8) (1984) 953-1019. http://dx.doi.org/10.1080/00927878408823035

Pumplün D. and Röhrl H. Banach Spaces and Totally Convex Spaces II, Communications in algebra 13(5) (1985) 1047-1113. http://dx.doi.org/10.1080/00927878508823205

Pumplun D. Eilenberg-Moore algebras revisited, Seminarberichte, FB Mathematik und Informatic, Fernuniversität 29 (1988) 57-144.

Rudin W. Functional analysis, Intern. Series in Pure and Appl. Math., McGraw-hill, 1991.

Ryan R.A. Introduction to Tensor Product of Banach spaces, Springer Monographs in Math., Springer Verlag (London), 2002. http://dx.doi.org/10.1007/978-1-4471-3903-4

Schaefer H.H. Topological vector spaces, Graduate Texts in Mathematics, Springer, 1999. http://dx.doi.org/10.1007/978-1-4612-1468-7

Sydow W. On Hom-functors and tensor products of topological vector spaces, Lecture notes in Math. 962 (1982) 292-301. http://dx.doi.org/10.1007/BFb0066910

Schatten R. A theory of cross spaces, Annals of math. studies 26, Princeton university press, 1950.

Von Neumann J. On infinite direct products, Compositio Math. 6 (1938) 1-77.

Downloads

Published

2003-10-01

How to Cite

[1]
M. Sioen and S. Verwulgen, “Locally convex approach spaces”, Appl. Gen. Topol., vol. 4, no. 2, pp. 263–279, Oct. 2003.

Issue

Section

Regular Articles