The extension of two-Lipschitz operators
DOI:
https://doi.org/10.4995/agt.2024.20296Keywords:
two-Lipschitz operator, compact two-Lipschitz operator, extension of two-Lipschitz operatorAbstract
The paper deals with some further results concerning the class of two-Lipschitz operators. We prove first an isometric isomorphism identification of two-Lipschitz operators and Lipschitz operators. After defining and characterize the adjoint of two-Lipschitz operator, we prove a Schauder type theorem on the compactness of the adjoint. We study the extension of two-Lipschitz operators from cartesian product of two complemented subspaces of a Banach space to the cartesian product of whole spaces. Also, we show that every two-Lipschitz functional defined on cartesian product of two pointed metric spaces admits an extension with the same two-Lipschitz norm, under some requirements on domaine spaces.
Downloads
References
D. Achour, E. Dahia, and M. A. S. Saleh. Multilinear mixing operators and Lipschitz mixing operator ideals, Operators and Matrices 12, no. 4 (2018), 903-931. https://doi.org/10.7153/oam-2018-12-55
D. Achour, E. Dahia, and P. Turco, The Lipschitz injective hull of Lipschitz operator ideals and applications, Banach J. Math. Anal. 14 (2020), 1241-1257. https://doi.org/10.1007/s43037-020-00060-3
D. Achour, E. Dahia, and P. Turco, Lipschitz p-compact mappings, Monatshefte für Mathematik 189 (2019), 595-609. https://doi.org/10.1007/s00605-018-1252-1
D. Achour, P. Rueda, E.A. Sánchez-Pérez, and R. Yahi, Lipschitz operator ideals and the approximation property, J. Math. Anal. Appl. 436 (2016), 217-236. https://doi.org/10.1016/j.jmaa.2015.11.050
R. F. Arens and J. Jr. Eells, On embedding uniform and topological spaces, Pacific J. Math 6 (1956), 397-403. https://doi.org/10.2140/pjm.1956.6.397
Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis, vol. 1, Amer. Math. Soc. Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000. https://doi.org/10.1090/coll/048
E. Dahia, and K. Hamidi, Lipschitz integral operators represented by vector measures, Appl. Gen. Topol. 22, no. 2 (2021), 367-383. https://doi.org/10.4995/agt.2021.15061
A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland, Amsterdam, 1992.
M. Dubei, E. D. Tymchatynb, and A. Zagorodnyuk, Free Banach spaces and extension of Lipschitz maps, Topology 48 (2009), 203-212. https://doi.org/10.1016/j.top.2009.11.020
K. Hamidi, E. Dahia, D. Achour, and A. Tallab, Two-Lipschitz operator ideals, J. Math. Anal. Appl. 491 (2020), Paper no. 124346. https://doi.org/10.1016/j.jmaa.2020.124346
T. L. Hayden, The extension of bilinear functionals, Pacific J. Math. 22 (1967), 99-108. https://doi.org/10.2140/pjm.1967.22.99
M. S. Ramanujan, and E. Schock, Operator ideals and spaces of bilinear operators, Lin. Multilin. Alg. 18 (1985), 307-318. https://doi.org/10.1080/03081088508817695
D. Ruch, Characterizations of compact bilinear maps, Lin. Multilin. Alg. 25 (1989), 297-307. https://doi.org/10.1080/03081088908817956
E. A. Sánchez-Pérez, Product spaces generated by bilinear maps and duality, Czechoslovak Mathematical Journal 65 (2015), 801-817. https://doi.org/10.1007/s10587-015-0209-y
I. Sawashima, Methods of Lipschitz duals, Lecture Notes in econom. and Math. systems, vol. 419, Springer Verlag, 1975, pp. 247-259.
N. Weaver. Lipschitz Algebras, World Scientific Publishing Co., Singapore, 1999. https://doi.org/10.1142/4100
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Elhadj Dahia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.