On classes of T0 spaces admitting completions
DOI:
https://doi.org/10.4995/agt.2003.2016Keywords:
Affine set, T0, Sober and injective space, Compact space, Completion, Zariski closure, topological category, Coreflective subcategoryAbstract
For a given class X of T0 spaces the existence of a subclass C, having the same properties that the class of complete metric spaces has in the class of all metric spaces and non-expansive maps, is investigated. A positive example is the class of all T0 spaces, with C the class of sober T0 spaces, and a negative example is the class of Tychonoff spaces. We prove that X has the previous property (i.e., admits completions) whenever it is the class of T0 spaces of an hereditary coreflective subcategory of a suitable supercategory of the category Top of topological spaces. Two classes of examples are provided.
Downloads
References
J. Adamek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (Wiley and Sons Inc., 1990).
S. Baron, Note on epi in T0, Canad. Math. Bull. 11(1968), 503-504. http://dx.doi.org/10.4153/CMB-1968-061-6
L. M. Brown and M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy Sets and Systems 98 (1998), 217-224. http://dx.doi.org/10.1016/S0165-0114(97)00358-8
L. M. Brown, R. Erturk and S . Dost, Ditopological texture spaces and fuzzy topology. I. General concepts. Preprint, 2002.
G. C. L. Brümmer and E. Giuli, A categorical concept of completion, Comment. Math. Univ. Carolin. 33 (1992), 131-147.
G. C. L. Brümmer, E. Giuli and H. Herrlich, Epireflections which are completions, Cahiers Topologie Géom. Diff. Catég. 33 (1992), 71-93.
M. M. Clementino, E. Giuli and W. Tholen, Topology in a category: compactness, Portugal. Math. 53 (1996), 397-433.
M. M. Clementino and W. Tholen, Separation versus connectedness, Topology Appl. 75 (1997), 143-179. http://dx.doi.org/10.1016/S0166-8641(96)00087-9
D. Deses, E. Giuli and E. Lowen-Colebunders, On complete objects in the category of T0 closure spaces, Applied Gen. Topology, 4 (2003), 25-34.
D. Dikranjan and E. Giuli, Closure operators. I. Topology Appl. 27 (1987), 129-143. http://dx.doi.org/10.1016/0166-8641(87)90100-3
D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Math. 11 (1988), 323-337. http://dx.doi.org/10.1080/16073606.1988.9632148
D. Dikranjan and W. Tholen Categorical structure of closure operators (Kluwer Academic Publishers, Dordrecht, 1995).
Y. Diers, Affine algebraic sets relative to an algebraic theory , J. Geom. 65 (1999), 54-76. http://dx.doi.org/10.1007/BF01228678
R. Engelking, General Topology, (Heldermann Verlag, Berlin 1988).
E. Giuli, Zariski closure, completeness and compactness, Mathematik-Arbeitspapiere (Univ. Bremen) 54 (2000), 207-216.
E. Giuli and M. Husek, A counterpart of compactness, Boll. Un. Mat. Ital.(7) 11-B (1997), 605-621.
H. Herrlich, Topological functors, Gen. Topology Appl. 4 (1974), 125-142. http://dx.doi.org/10.1016/0016-660X(74)90016-6
Th. Marny, On epireflective subcategories of topological categories, Gen. Topology Appl. 10 (1979), 175-181. http://dx.doi.org/10.1016/0016-660X(79)90006-0
W. Pratt, Chu spaces and their interpretation as concurrent objects (Springer Lecture Notes in Computer Science 1000 1995), 392-405. http://dx.doi.org/10.1007/BFb0015256
G. Preuss, Theory of Topological Structures (D. Reidel Publishing Company, 1988). http://dx.doi.org/10.1007/978-94-009-2859-6
L. Skula, On a reflective subcategory of the category of all topological spaces, Trans. Amer. Math. Soc. 142 (1969), 137-141.
Downloads
Published
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.