Functorial approach structures

Authors

  • Guillaume C.L. Brümmer University of Cape Town
  • M. Sioen Free University of Brussels

DOI:

https://doi.org/10.4995/agt.2003.2012

Keywords:

Approach space, (approach) bicompleteness, Epireflective subcategory, Functorial approach structure, Spanning, Topological space

Abstract

We show that there exists at least a proper class of functorial approach structures, i.e., right inverses to the forgetful functor T : AP→ Top (where AP denotes the topological construct of approach spaces and contractions as introduced by R. Lowen). There is however a great difference in nature of these functorial approach structures when compared to the quasi-uniform paradigm which has been extensively studied by the first author: whereas it is well-known from [2] that a large class of epireflective subcategories of Top0 can be “parametrized” using the interaction of functorial quasi-uniformities with the quasi-uniform bicompletion, we show that using functorial approach structures together with the approach bicompletion developed in [10], only Top0 itself can be retrieved in this way.

Downloads

Download data is not yet available.

Author Biographies

Guillaume C.L. Brümmer, University of Cape Town

Department of Mathematics and Applied Mathematics

M. Sioen, Free University of Brussels

Department of Mathematics

References

J. Adámek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (Wiley, New York, 1990).

G. C. L. Brümmer, Categorical aspects of the theory of quasi-uniform spaces, Rend. Istit. Mat. Univ. Trieste 30 (Suppl.) (1999), 45-74.

G. C. L. Brümmer, Extending constructions from the T0-spaces to all topological spaces, in preparation.

G. C. L. Brümmer, Functorial transitive quasi-uniformities, Categorical Topology (Proc. Conf. Toledo, Ohio, 1983), (Heldermann Verlag, Berlin, 1984), 163-184.

G. C. L. Brümmer, Completions of functorial topological structures, Recent Developments of General Topology and its Applications (Proc. Conf. Berlin 1992), (Akademie Verlag, Berlin, 1992), 60-71.

G. C. L. Brümmer and E. Giuli, A categorical concept of completion of objects, Math. Univ. Carolinae 33 (1992), 131-147.

G. C. L. Brümmer and A. W. Hager, Completion-true functorial uniformities, Seminarberichte Fachber. Math. Inf. FernUniv. Hagen 19 (1984), 95-104.

G. C. L. Brümmer and A. W. Hager, Functorial uniformization of topological spaces, Topology Appl. 27 (1987), 113-127. http://dx.doi.org/10.1016/0166-8641(87)90099-X

G. C. L. Brümmer and H.-P Künzi, Bicompletion and the Samuel bicompactification, Appl. Categ. Struct. 10 (2002), 317-330. http://dx.doi.org/10.1023/A:1015240428548

G. C. L. Brümmer and M. Sioen, Approach bicompleteness and bicompletion, in preparation.

P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces, (Marcel Dekker, New York and Basel, 1982).

M. Husek, Applications of category theory to uniform structures, Lecture Notes Math. 962 (Springer, Berlin, 1982), 138-144.

R. Lowen, Approach spaces. The Missing Link in the Topology-Uniformity-Metric Triad, (Clarendon Press, Oxford, 1997).

R. Lowen and M. Sioen, Proximal hypertopologies revisited, Set-Valued Analysis 6 (1998), 1-19. http://dx.doi.org/10.1023/A:1008646106442

R. Lowen and M. Sioen, Approximations in functional analysis, Results in Mathematics 37 (2000), 345-372. http://dx.doi.org/10.1007/BF03322005

R. Lowen and M. Sioen, Weak representations of quantified hyperspace structures, Top. Appl. 104 (2000), 169-179. http://dx.doi.org/10.1016/S0166-8641(99)00024-3

R. Lowen and M. Sioen, A short note on separation in AP, Appl. Gen. Top., to appear.

T. Marny, On epireflective subcategories of topological categories, Gen. Top. Appl. 10 (1979), 175-181. http://dx.doi.org/10.1016/0016-660X(79)90006-0

M. Sioen and S. Verwulgen, Locally convex approach spaces, Appl. Gen. Top., to appear.

Downloads

Published

2003-04-01

How to Cite

[1]
G. C. Brümmer and M. Sioen, “Functorial approach structures”, Appl. Gen. Topol., vol. 4, no. 1, pp. 91–97, Apr. 2003.

Issue

Section

Regular Articles