On the hyperspaces of meager and regular continua

|

Accepted: 2024-06-28

|

Published: 2024-10-01

DOI: https://doi.org/10.4995/agt.2024.20116
Funding Data

Downloads

Keywords:

Meager continuum, regular continuum, hyperspaces of continua, hyperspace of meager continua, hyperspace of regular continua, composant, meager composant, filament, filament composant

Supporting agencies:

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)

Abstract:

Given a metric continuum X, we consider the collection of all regular subcontinua of X and the collection of all meager subcontinua of X, these hyperspaces are denoted by D(X) and M(X), respectively. It is known that D(X) is compact if and only if D(X) is finite.
In this way, we find some conditions related about the cardinality of D(X) and we reduce the fact to count the elements of D(X) to a Graph Theory problem, as an application of this, we prove in particular that | D ( X ) | ∉ { 2,3,4,5,8 , 9 } h t ) for any continuum X. Also, we prove that D(X) is never homeomorphic to ℕ . On the other hand, given a point p ∈ X , we consider the meager composant and the filament composant of p in X, denoted by MXp  and FcsX(p), respectively, and we study some relations between MXp and FcsX(p) such as the equality of them as a subset of X. Also, we construct examples showing that the collection Fcs ( X ) = { FcsX ( p ) : p ∈ X } can be homeomorphic to: any finite discrete space, the harmonic sequence, the closure of the harmonic sequence and the Cantor set. Finally, we study the contractibility of M(X); we prove the arc of pseudo-arcs, which is a no contractible continuum, satisfies that its hyperspace of meager subcontinua is contractible, given a solution to an open problem.  Also, we rise open problems.

Show more Show less

References:

D. P. Bellamy, Questions in and out of context, in: Open Problems in Topology II, Elsevier Science, 2007, pp. 259-262. https://doi.org/10.1016/B978-044452208-5/50030-2

R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43-51. https://doi.org/10.2140/pjm.1951.1.43

A. Illanes, S. B. Nadler Jr., Hyperspaces: Fundamental and Recent Advances, Monogr. Textb. Pure Appl. Math, vol.216, Marcel Dekker, Inc., New York, 1999.

I. W. Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana (3) 5 (1999), 25-77.

S. Macías, Topics on Continua, 2nd Edition, Springer-Cham, (2018). https://doi.org/10.1007/978-3-319-90902-8

C. G. Mouron and N. Ordoñez, Meager composants in continua, Topology Appl. 210 (2016), 292-310. https://doi.org/10.1016/j.topol.2016.07.017

S. B. Nadler Jr., Continuum Theory. An Introduction, Monogr. Textb. Pure Appl. Math, vol.158, Marcel Dekker, Inc., New York, 1992.

S. B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Math, vol. 49, Marcel Dekker-New York, 1978.

N. Ordoñez, The hyperspace of regular subcontinua, Topology Appl. 234 (2018), 415-427. https://doi.org/10.1016/j.topol.2017.11.038

N. Ordoñez, The hyperspace of meager subcontinua, Houston Journal of Mathematics 46, no. 3 (2020), 821-834.

N. Ordoñez, Hyperspaces through regular and meager subcontinua, Topology Appl. 300 (2021), 107760. https://doi.org/10.1016/j.topol.2021.107760

J. R. Prajs, K. Whittington, Filament additive homogeneous continua, Indiana Univ. Math. J. 56 (2007), 263-278. https://doi.org/10.1512/iumj.2007.56.2871

J. R. Prajs and K. Whittington, Filament sets and homogeneous continua, Topology Appl. 154 (2007), 1581-1591. https://doi.org/10.1016/j.topol.2006.12.005

E. S. Thomas Jr., Monotone decompositions of irreducible continua, Dissertationes Math. (Rozprawy Mat.) 50 (1966), 1-74.

S. Willard, General Topology, Addison-Wesley, Reading MA, 1970.

Show more Show less