Holonomy, extendibility, and the star universal cover of a topological groupoid


  • Osman Mucuk Erciyes University
  • Ilhan Icen Ínönü University




Locally topological groupoids, Holonomy groupoid, Extendibility


Let G be a groupoid and W be a subset of G which contains all the identities and has a topology. With some conditions on G and W, the pair (G;W) is called a locally topological groupoid. We explain a criterion for a locally topological groupoid to be extendible to a topological groupoid. In this paper we apply this result to get a topology on the monodromy groupoid MG which is the union of the universal covers of Gx's.


Download data is not yet available.

Author Biographies

Osman Mucuk, Erciyes University

Department of Mathematics

Ilhan Icen, Ínönü University

Department of Mathematics


M. E. -S. A. -F. Aof and R. Brown, The holonomy groupoid of a locally topological groupoid, Topology Appl. 47 (1992), 97-113. http://dx.doi.org/10.1016/0166-8641(92)90065-8

R. Brown, Topology; A Geometric account of General Topology, Homotopy Types and the Fundamental Groupoid (Ellis Horwood, Chichester, 1988).

R. Brown and G. Danesh-Naruie, The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc. 19 (2) (1975), 237-244. http://dx.doi.org/10.1017/S0013091500015509

R. Brown and Í. Íçen, Lie local subgroupoids and their Lie holonomy and monodromy groupoids, Topology Appl. 115 (2001), 125-138. http://dx.doi.org/10.1016/S0166-8641(00)00062-6

R. Brown Í. Íçen and O. Mucuk, Local subgroupoids II: Examples and properties, Topology Appl. 127 (2003), 393-408. http://dx.doi.org/10.1016/S0166-8641(02)00101-3

R. Brown and O. Mucuk, The monodromy groupoid of a Lie groupoid, Cah. Top. Géom. Diff. Cat. 36 (1995), 345-369.

R. Brown and O. Mucuk, Foliations, locally Lie groupoids and holonomy, Cah. Top. Gém. Diff. Cat. 37 (1996), 61-71.

C. Ehresmann, Catégories topologiques et catégories différentiables, Coll. Géom. Diff. Glob. Bruxelles (1959), 137-150.

K. C. H. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series 124, (Cambridge University Press, 1987). http://dx.doi.org/10.1017/CBO9780511661839

O. Mucuk, Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.

O. Mucuk, Locally topological groupoid, Turkish Journal of Mathematics 21-2 (1997), 235-243.

J. Pradines, Théorie de Lie pour les Groupoides différentiables, relation entre proprieties locales et globales, Comptes Rendus Acad. Sci. Paris 263 (1966), 907-910.




How to Cite

O. Mucuk and I. Icen, “Holonomy, extendibility, and the star universal cover of a topological groupoid”, Appl. Gen. Topol., vol. 4, no. 1, pp. 79–89, Apr. 2003.



Regular Articles