On complete objects in the category of T0 closure spaces

Authors

  • D. Deses Vrije Universiteit Brussel
  • Eraldo Giuli Università di L'Aquila
  • E. Lowen-Colebunders Vrije Universiteit Brussel

DOI:

https://doi.org/10.4995/agt.2003.2007

Keywords:

Complete object, Firm, Injective, Complete lattice, T0 object, Closure space

Abstract

In this paper we present an example in the setting of closure spaces that fits in the general theory on “complete objects” as developed by G. C. L. Brümmer and E. Giuli. For V the class of epimorphic embeddings in the construct Cl0 of T0 closure spaces we prove that the class of V-injective objects is the unique firmly V-reflective subconstruct of Cl0. We present an internal characterization of the Vinjective objects as “complete” ones and it turns out that this notion of completeness, when applied to the topological setting is much stronger than sobriety. An external characterization of completeness is obtained making use of the well known natural correspondence of closures with complete lattices. We prove that the construct of complete T0 closure spaces is dually equivalent to the category of complete lattices with maps preserving the top and arbitrary joins.

Downloads

Download data is not yet available.

Author Biographies

D. Deses, Vrije Universiteit Brussel

Department of Mathematics

Eraldo Giuli, Università di L'Aquila

Dipartimento di Matematica Pura ed Applicata

E. Lowen-Colebunders, Vrije Universiteit Brussel

Department of Mathematics

References

J. Adámek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (Wiley, New York, 1990).

D. Aerts, Foundations of quantum physics: a general realistic and operational approach, Internat. J. Theoret. Phys. 38 (1) (1999), 289-358. http://dx.doi.org/10.1023/A:1026605829007

G. Aumann, Kontaktrelationen, Bayer. Akad. Wiss. Math.-Nat. Kl. Sitzungsber (1970), 67-77.

G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, Rhode Island, 1940).

G. C. L. Brümmer and E. Giuli, A categorical concept of completion of objects, Comment. Math. Univ. Carolin. 33 (1) (1992), 131-147.

G. C. L. Brümmer, E. Giuli and H. Herrlich, Epireflections which are completions, Cahiers Topologie Géom. Diff. Catég. 33 (1) (1992), 71-93.

Y. Diers, Categories of algebraic sets, Appl. Categ. Structures 4 (2-3) (1996), 329-341. http://dx.doi.org/10.1007/BF00122260

D. Dikranjan and E. Giuli, Closure operators. I. Topology Appl. 27 (1987), 129-143. http://dx.doi.org/10.1016/0166-8641(87)90100-3

D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Math. 11 (3) (1988), 323-337. http://dx.doi.org/10.1080/16073606.1988.9632148

M. Erné, Lattice representations for categories of closure spaces, Categorical Topology (Heldermann Verlag, Berlin 1983), 197-222.

B. Ganter and R. Wille, Formal Concept Analysis (Springer Verlag, Berlin, 1998).

E. Giuli, Zariski closure, completeness and compactness, Mathematik – Arbeitspapiere 54 (2000), Universität Bremen, Proceedings of Catmat 2000, H. Herrlich and H. Porst editors, 207-216.

H. Herrlich and G. Strecker, Category theory, Sigma Series in Pure Mathematics (Heldermann Verlag, Berlin, 1979).

R. -E. Hoffmann, Topological functors admitting generalized Cauchy-completions, in Categorical Topology, Lecture Notes in Math. 540 (1976), 286-344. http://dx.doi.org/10.1007/BFb0080865

Th. Marny, On epireflective subcategories of topological categories, Gen. Topology Appl. 10 (2) (1979), 175-181. http://dx.doi.org/10.1016/0016-660X(79)90006-0

D. J. Moore, Categories of representations of physical systems, Helv. Phys. Acta 68 (1995), 658-678.

L. D. Nel, Initially structured categories and Cartesian closedness, Canad. J. Math. 27 (6) (1975), 1361-1377. http://dx.doi.org/10.4153/CJM-1975-139-9

G. Preuss, Theory of Topological Structures (D. Reidel Publishing Company, Dordrecht, 1988). http://dx.doi.org/10.1007/978-94-009-2859-6

A. Van der Voorde, Separation axioms in extensiontheory for closure spaces and their relevance to state property systems, PhD Thesis Vrije Universiteit Brussel, July 2001.

B. Van Steirteghem, T0 separation in axiomatic quantum mechanics, Internat. J. Theoret. Phys. 39 (3) (2000), 955-962. http://dx.doi.org/10.1023/A:1003603719170

Downloads

Published

2003-04-01

How to Cite

[1]
D. Deses, E. Giuli, and E. Lowen-Colebunders, “On complete objects in the category of T0 closure spaces”, Appl. Gen. Topol., vol. 4, no. 1, pp. 25–34, Apr. 2003.

Issue

Section

Regular Articles