On complete objects in the category of T0 closure spaces

D. Deses, Eraldo Giuli, E. Lowen-Colebunders


In this paper we present an example in the setting of closure spaces that fits in the general theory on “complete objects” as developed by G. C. L. Brümmer and E. Giuli. For V the class of epimorphic embeddings in the construct Cl0 of T0 closure spaces we prove that the class of V-injective objects is the unique firmly V-reflective subconstruct of Cl0. We present an internal characterization of the Vinjective objects as “complete” ones and it turns out that this notion of completeness, when applied to the topological setting is much stronger than sobriety. An external characterization of completeness is obtained making use of the well known natural correspondence of closures with complete lattices. We prove that the construct of complete T0 closure spaces is dually equivalent to the category of complete lattices with maps preserving the top and arbitrary joins.


Complete object; Firm; Injective; Complete lattice; T0 object; Closure space

Full Text:



J. Adámek, H. Herrlich and G. Strecker, Abstract and Concrete Categories (Wiley, New York, 1990).

D. Aerts, Foundations of quantum physics: a general realistic and operational approach, Internat. J. Theoret. Phys. 38 (1) (1999), 289-358. http://dx.doi.org/10.1023/A:1026605829007

G. Aumann, Kontaktrelationen, Bayer. Akad. Wiss. Math.-Nat. Kl. Sitzungsber (1970), 67-77.

G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, Rhode Island, 1940).

G. C. L. Brümmer and E. Giuli, A categorical concept of completion of objects, Comment. Math. Univ. Carolin. 33 (1) (1992), 131-147.

G. C. L. Brümmer, E. Giuli and H. Herrlich, Epireflections which are completions, Cahiers Topologie Géom. Diff. Catég. 33 (1) (1992), 71-93.

Y. Diers, Categories of algebraic sets, Appl. Categ. Structures 4 (2-3) (1996), 329-341. http://dx.doi.org/10.1007/BF00122260

D. Dikranjan and E. Giuli, Closure operators. I. Topology Appl. 27 (1987), 129-143. http://dx.doi.org/10.1016/0166-8641(87)90100-3

D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Math. 11 (3) (1988), 323-337. http://dx.doi.org/10.1080/16073606.1988.9632148

M. Erné, Lattice representations for categories of closure spaces, Categorical Topology (Heldermann Verlag, Berlin 1983), 197-222.

B. Ganter and R. Wille, Formal Concept Analysis (Springer Verlag, Berlin, 1998).

E. Giuli, Zariski closure, completeness and compactness, Mathematik – Arbeitspapiere 54 (2000), Universität Bremen, Proceedings of Catmat 2000, H. Herrlich and H. Porst editors, 207-216.

H. Herrlich and G. Strecker, Category theory, Sigma Series in Pure Mathematics (Heldermann Verlag, Berlin, 1979).

R. -E. Hoffmann, Topological functors admitting generalized Cauchy-completions, in Categorical Topology, Lecture Notes in Math. 540 (1976), 286-344. http://dx.doi.org/10.1007/BFb0080865

Th. Marny, On epireflective subcategories of topological categories, Gen. Topology Appl. 10 (2) (1979), 175-181. http://dx.doi.org/10.1016/0016-660X(79)90006-0

D. J. Moore, Categories of representations of physical systems, Helv. Phys. Acta 68 (1995), 658-678.

L. D. Nel, Initially structured categories and Cartesian closedness, Canad. J. Math. 27 (6) (1975), 1361-1377. http://dx.doi.org/10.4153/CJM-1975-139-9

G. Preuss, Theory of Topological Structures (D. Reidel Publishing Company, Dordrecht, 1988). http://dx.doi.org/10.1007/978-94-009-2859-6

A. Van der Voorde, Separation axioms in extensiontheory for closure spaces and their relevance to state property systems, PhD Thesis Vrije Universiteit Brussel, July 2001.

B. Van Steirteghem, T0 separation in axiomatic quantum mechanics, Internat. J. Theoret. Phys. 39 (3) (2000), 955-962. http://dx.doi.org/10.1023/A:1003603719170

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. The Fundamental Group as the Structure of a Dually Affine Space
Eraldo Giuli, Walter Tholen
Applied Categorical Structures  vol: 24  issue: 5  first page: 509  year: 2016  
doi: 10.1007/s10485-016-9446-y

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt