Remarks on fixed point assertions in digital topology, 7
DOI:
https://doi.org/10.4995/agt.2024.20026Keywords:
digital image, fixed point, metric spaceAbstract
This paper continues a series discussing flaws in published assertions concerning fixed points in digital images.
Downloads
References
E. Almuhur, E. A. Abuhijleh, G. Alafifi, A. Alkouri, and M. Bin-Asfour, Freezing sets invariant-based characteristics of digital images, WSEAS Transactions on Mathematics 22 (2023), 354-358. https://doi.org/10.37394/23206.2023.22.42
M. A. Al-Thagafi, and N. Shahzad, Generalized I-nonexpansive self maps and invariant approximations, Acta Mathematica Sinica 24, no. 5 (2008), 867-876. https://doi.org/10.1007/s10114-007-5598-x
L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15, no. 8 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
L. Boxer, Continuous maps on digital simple closed curves, Applied Mathematics 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050
L. Boxer, Remarks on fixed point assertions in digital topology, 2, Applied General Topology 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667
L. Boxer, Remarks on fixed point assertions in digital topology, 3, Applied General Topology 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117
L. Boxer, Fixed point sets in digital topology, 2, Applied General Topology 21, no. 1 (2020), 111-133. https://doi.org/10.4995/agt.2020.12101
L. Boxer, Remarks on fixed point assertions in digital topology, 4, Applied General Topology 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075
L. Boxer, Remarks on fixed point assertions in digital topology, 5, Applied General Topology 23, no. 2 (2022), 437-451. https://doi.org/10.4995/agt.2022.16655
L. Boxer, Remarks on fixed point assertions in digital topology, 6, Applied General Topology 24, no. 2 (2023), 281-305. https://doi.org/10.4995/agt.2023.18996
L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Applied General Topology 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474
G. Chartrand and S. Tian, Distance in digraphs, Computers & Mathematics with Applications 34, no. 11 (1997), 15-23. https://doi.org/10.1016/S0898-1221(97)00216-2
L. Ćirć, A generalization of Banach's contraction principle, Proceedings of the American Mathematical Society 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2
S. Dalal, Common fixed point results for compatible map in digital metric spaces, Journal of Advances in Mathematics 13, no. 5 (2017), 7387-7392. https://doi.org/10.24297/jam.v13i4.6458
S. Dalal, Common fixed point results for compatible map in digital metric spaces, Scholars Journal of Physics, Mathematics and Statistics 4, no. 4 (2017), 196-201.
S. Dalal, I. A. Masmali and G. Y. Alhamzi, Common fixed point results for compatible map in digital metric space, Advances in Pure Mathematics 8, no. 3 (2018), 362-371. https://doi.org/10.4236/apm.2018.83019
O. Ege and I. Karaca, Digital homotopy fixed point theory, Comptes Rendus Mathematique 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006
O. Ege and I. Karaca, Banach fixed point theorem for digital images, Journal of Nonlinear Science and Applications 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
R. O. Gayathri and R. Hemavathy, Fixed point theorems for digital images using path length metric, In: S.D. Jabeen, J. Ali, and O. Castillo, eds., Soft Computing and Optimization - SCOTA 2021, Springer Proceedings in Mathematics & Statistics, vol. 404, pp. 221-234. Springer, Singapore. https://doi.org/10.1007/978-981-19-6406-0_18
N. Gupta, A. Singh, and G. Modi, Application of fixed point theorems for digital contractive type mappings in digital metric space, International Journal of Scientific Research in Mathematical and Statistical Sciences 6, no. 1 (2019), 323-327.
J. Haarmann, M. P. Murphy, C. S. Peters, and P. C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Visn. 53 (2015), 288-302. https://doi.org/10.1007/s10851-015-0578-8
S. E. Han, Banach fixed point theorem from the viewpoint of digital topology, Journal of Nonlinear Science and Applications 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19
G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences 9, no. 4 (1986), 771-779. https://doi.org/10.1155/S0161171286000935
R. Rani, Common fixed point theorem in digital spaces using contraction mappings, International Journal of Statistics and Applied Mathematics 3, no. 4 (2018), 140-142.
A. Rosenfeld, Digital topology, The American Mathematical Monthly 86, no. 8 (1979), 621-630. https://doi.org/10.1080/00029890.1979.11994873
A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
A. S. Saluja and J. Jhade, Common fixed point theorem for weakly compatible mappings in digital metric space, International Journal of Mathematics and Computer Research 11, no. 5 (2023), 3448-3450. https://doi.org/10.47191/ijmcr/v11i5.09
B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for α-ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications 75, no. 4 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
K. Sridevi, M. V. R. Kameswari and D. M. K. Kiran, Fixed point theorems for digital contractive type mappings in digital metric spaces, International Journal of Mathematics Trends and Technology 48, no. 3 (2017), 159-167. https://doi.org/10.14445/22315373/IJMTT-V48P522
A. Suganthi, Common fixed-point theorems in digital metric space using implicit relation, Advances and Applications in Mathematical Sciences 20, no. 10 (2021), 2351-2369.
D. K. Tiwari, S. Pandey, and K. Kushwaha, New common fixed point results for digital type expansive mappings in digital metric space, Bulletin of Mathematics and Statistics Research 11, no. 2 (2023), 57-66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Laurence Boxer
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.