Continuous functions with compact support

Sudip Kumar Acharyya, K.C. Chattopadhyaya, Partha Pratim Ghosh

Abstract

The main aim of this paper is to investigate a subring of the ring of continuous functions on a topological space X with values in a linearly ordered field F equipped with its order topology, namely the ring of continuous functions with compact support. Unless X is compact, these rings are commutative rings without unity. However, unlike many other commutative rings without unity, these rings turn out to have some nice properties, essentially in determining the property of X being locally compact non-compact or the property of X being nowhere locally compact. Also, one can associate with these rings a topological space resembling the structure space of a commutative ring with unity, such that the classical Banach Stone Theorem can be generalized to the case when the range field is that of the reals.


Keywords

Ordered Fields; Zero Dimensional Spaces; Strongly Zero Dimensional Spaces; Compactifications

Full Text:

PDF

References

W. Wieslaw, Topological Fields, Marcell Dekker (1978).

S. Mrowka and R. Engelking, On E-compact spaces, Bull. Acad. Polon. sci. Ser. sci. Math. Astronom. Phys. 6 (1958), 429–435.

L. Gillman and M. Jerison, Rings of Continuous Functions, van Nostrand Reinhold Company, edited by M. H. Stone, L. Nirenberg and S. S. Chern (1960). http://dx.doi.org/10.1007/978-1-4615-7819-2

S. K. Acharyya, K. C. Chattopadhyaya and P. P. Ghosh, Constructing Banaschewski Compactification Without Dedekind Completeness Axiom, to appear in International Journal for Mathematics and Mathematical Sciences.

S. K. Acharyya, K. C. Chattopadhyaya and P. P. Ghosh, The rings Ck(X) and C∞(X), some remarks, Kyungpook Journal of Mathematics, 43 (2003), 363 - 369.

Abstract Views

1456
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Finite frames, P-frames and basically disconnected frames
Sudip Kumar Acharyya, Goutam Bhunia, Partha Pratim Ghosh
Algebra universalis  vol: 72  issue: 3  first page: 209  year: 2014  
doi: 10.1007/s00012-014-0296-x



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt