The topological structure of (homogeneous) spaces and groups with countable cs∗-character

Authors

  • Taras Banak Akademia Swietorzyska
  • Lubomyr Zdomskyi Ivan Franko Lviv National University

DOI:

https://doi.org/10.4995/agt.2004.1993

Keywords:

sb-network, cs-networ, , cs∗-network, Sequential topological group, kω-group, Topologically homogeneous space, Small cardinal, Cardinal invariant

Abstract

In this paper we introduce and study three new cardinal topological invariants called the cs∗-, cs-, and sb-characters. The class of topological spaces with countable cs∗-character is closed under many topological operations and contains all N-spaces and all spaces with point-countable cs∗-network. Our principal result states that each non-metrizable sequential topological group with countable cs∗- character has countable pseudo-character and contains an open kω- subgroup. This result is specific for topological groups: under Martin Axiom there exists a sequential topologically homogeneous kω-space X with N0 = cs∗x ­(X) <ψ (X).

Downloads

Download data is not yet available.

References

A.V. Arkhangelski, Maps and spaces, Uspekhi Mat. Nauk 21:4 (1966), 133–184 (in Russian).

A.V. Arkhangelski, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dokl. 13 (1972), 265–268 (in Russian).

A.V. Arkhangelski, Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys 33 (1978), 33–96 (in Russian). http://dx.doi.org/10.1070/RM1978v033n06ABEH003884

A.V. Arkhangelski, The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. 2 (1981), 163–200.

A.V. Arkhangelski, S.P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313–320; 506.

T. Banakh, On topological groups containing a Fr´echet-Urysohn fan, Matem. Studii 9:2 (1998), 149–154.

T. Banakh, Topological classification of strong duals to nuclear (LF)-spaces, Studia Math. 138:3 (2000), 201–208.

T. Banakh, Topological classification of zero-dimensional M!-groups, Matem. Studii. 15:1 (2001), 109–112.

W. Comfort, Topological groups, in: K.Kunen, J.E.Vaughan (eds.) Handbook of Set-theoretic Topology, (Elsevier Science Publishers B.V., 1984), 1143–1263.

E.K. van Douwen, The integers and Topology, in: K.Kunen, J.E.Vaughan (eds.), Handbook of Set-Theoretic Topology (North-Holland, Amsterdam, 1984), 111–167.

R. Engelking, General Topology (Mir, Moskow, 1986), (in Russian).

R. Engelking, Theory of Dimensions, Finite and Infinite (Heldermann Verlag, 1995).

S.P. Franklin, B.V. Smith Thomas, A survey of k!-spaces, Topology Proc. 2 (1977), 111–124.

K. Hrbacek, T. Jech. Introduction to Set Theory, (Marcel Dekker, 1999).

S. Lin, A note on Arens space and sequential fan, Topology Appl. 81 (1997), 185-196. http://dx.doi.org/10.1016/S0166-8641(97)00031-X

A. Kechris, Classical Descriptive Set Theory (Springer, 1995). http://dx.doi.org/10.1007/978-1-4612-4190-4

D.A. Martin, R.M. Solovay. Internal Cohen Extensions, Ann. Math. Logic. 2 (1970), 143–178. http://dx.doi.org/10.1016/0003-4843(70)90009-4

J. Nagata. Generalized Metric Spaces, I. in: K.Morita, J.Nagata (eds.), Topics in General Topology (Elsevier Sci. Publ., 1989), 315–366. http://dx.doi.org/10.1016/S0924-6509(08)70155-7

S. Nedev. 0-metrizable spaces, Trudy Moskov. Mat. Obˇsˇc. 24 (1971) 201–236 (in Russian).

P. Nyikos. Metrizability and the Fr´echet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83:4 (1981), 793–801.

P.J. Nyikos. Classes of compact sequential spaces. In: J. Steprans, S. Watson (eds.), Set Theory and its Applications, Lect. Notes in Math. 1401 (Springer-Verlag, Berlin etc., 1989), 135–159.

I. Protasov, E. Zelenyuk, Topologies on groups determined by sequences, Matem. Studii, Monograph Series, 4 (VNTL, Lviv, 1999).

K. Sakai. On R∞-manifolds and Q∞-manifolds, Topology Appl. 18 (1984), 69–79. http://dx.doi.org/10.1016/0166-8641(84)90032-4

H. Schaefer, Topological Vector Spaces (The Macmillan Company, NY, 1966).

A.Shibakov, Metrizability of sequential topological groups with point-countable k-network, Proc. Amer. Math. Soc. 126 (1998), 943-947. http://dx.doi.org/10.1090/S0002-9939-98-04139-2

M.Tkachenko, Introduction to topological groups, Topology Appl. 86 (1998), 179-231. http://dx.doi.org/10.1016/S0166-8641(98)00051-0

J.E. Vaughan. Small uncountable cardinals and topology, in: J. van Mill and G.M.Reed (eds.) Open Problems in Topology (North-Holland, Amsterdam, 1990), 195–216.

N.N. Yakovlev. On the theory of g-metrizable spaces, Soviet Math. Dokl. 17 (1976), 1217–1219. Russian original: Dokl. Akad. Nauk SSSR 229 (1976), 1330–1331.

L. Zdomsky, Interplay of topological and algebraical structures on spaces with countable cs-character, (in preparation).

E. Zelenyuk, Topologies on groups determined by compact subspaces, Matem. Studii 5 (1995) 5-16 (in Russian).

E. Zelenyuk, On group operations on homogeneous spaces, Proc. Amer. Math. Soc. 132 (2004), 1219-1222. http://dx.doi.org/10.1090/S0002-9939-03-07299-X

Downloads

How to Cite

[1]
T. Banak and L. Zdomskyi, “The topological structure of (homogeneous) spaces and groups with countable cs∗-character”, Appl. Gen. Topol., vol. 5, no. 1, pp. 25–48, Apr. 2004.

Issue

Section

Regular Articles