Representations of ordered semigroups and the Physical concept of Entropy

Juan C. Candeal, Juan R. de Miguel, Esteban Induráin, Ghansyam B. Mehta

Abstract

The abstract concept of entropy is interpreted through the concept of numerical representation of a totally preordered set so that the concept of composition of systems or additivity of entropy can be analyzed through the study of additive representations of totally ordered semigroups.

Keywords

Topological ordered sets; Utility functions; Entropy; Semigroups

Full Text:

PDF

References

A. Ben-Tal, A. Charles and M. Teboulle, Entropic means, Journal of Mathematical Analysis and Applications 139 (1989), 537–551. http://dx.doi.org/10.1016/0022-247X(89)90128-5

G. Birkhoff, Lattice theory (Third edition), American Mathematical Society (Rhode Island, 1967)

D. S. Bridges and G. B. Mehta, Representation of preference orderings, (Springer Verlag, Berlin, 1995). http://dx.doi.org/10.1007/978-3-642-51495-1

J. C. Candeal, J. R. De Miguel and E. Induráin, Extensive measurement: Continuous additive utility functions on semigroups, Journal of Mathematical Psychology 40 (4) (1996), 281–286. http://dx.doi.org/10.1006/jmps.1996.0029

J. C. Candeal, J. R. De Miguel and E. Induráin, Topological additively representable semigroups, Journal of Mathematical Analysis and Applications 210 (1997), 375–389. http://dx.doi.org/10.1006/jmaa.1997.5359

J. C. Candeal, J. R. De Miguel, E. Induráin and E. Oloriz, Associativity equation revisited, Publicationes Mathematicae Debrecen 51 (1-2) (1997), 133–144.

G. Cantor, Beiträge zur Begründung der transfinite Mengenlehre I, Mathematische Annalen 46 (1895), 481–512. http://dx.doi.org/10.1007/BF02124929

G. Cantor, Beiträge zur Begründung der transfinite Mengenlehre II, Mathematische Annalen 49 (1897), 207–246. http://dx.doi.org/10.1007/BF01444205

J. H. Carruth, J. F. Hildenbrandt, and R. J. Koch, The theory of topological semigroups, (Marcel Dekker, New York, 1983).

J. H. Carruth, J. F. Hildenbrandt, and R. J. Koch, The theory of topological semigroups, 2, (Marcel Dekker, New York. 1986).

J. L. B. Cooper, The foundations of Thermodynamics, Journal of Mathematical Analysis and Applications 17 (1967), 172–193. http://dx.doi.org/10.1016/0022-247X(67)90174-6

J. R. De Miguel, J. C. Candeal, and E. Induráin, Archimedeaness and additive utility on totally ordered semigroups, Semigroup Forum 52 (1996), 335–347. http://dx.doi.org/10.1007/BF02574109

G. Debreu, Representation of a preference ordering by a numerical function, in Decision processes, R. M. Thrall et al. (eds.) (John Wiley, New York, 1954).

G. Debreu, Continuous properties of Paretian utility, International Economic Review 5 (1964), 285–293. http://dx.doi.org/10.2307/2525513

P. C. Fishburn, The foundations of expected utility, (D. Reidel, Dordrecht, The Netherlands, 1982). http://dx.doi.org/10.1007/978-94-017-3329-8

L. Fuchs, Partially ordered algebraic structures, (Pergamon Press, Oxford, 1963).

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. Scott, A compendium of continuous lattices, (Springer Verlag, Heidelberg, 1980). http://dx.doi.org/10.1007/978-3-642-67678-9

R. Giles, The mathematical foundations of thermodynamics, (Pergamon Press, Oxford, 1964).

B. Girotto and S. Holzer, On the axiomatic treatment of the Φ-mean, Journal of the Italian Statistical Society 4 (3) (1995), 299–336. http://dx.doi.org/10.1007/BF02589117

K. H. Hofmann and J. D. Lawson, Linearly ordered semigroups: Historical origins and A. H. Clifford’s influence, in pp. 15–39 of Semigroup theory and its applications, edited by K. H. Hofmann and M. W. Mislove (Cambridge University Press, Cambridge, U. K. 1996).

O. Hölder, Der Axiome der Quantität und die Lehre von Mass, Leipziger Berichte Math. Phys. C1. 53 (1901), 1–64.

D. H. Krantz, R. D. Luce, P. Suppes and A. Tversky, Foundations of measurement, (Academic Press, New York and London, 1971).

E. H. Lieb and J. Yngvason, A guide to entropy and the second law of thermodynamics, Notices of the American Mathematical Society 5 (1975), 195–204.

A. A. J. Marley, Abstract one-parameter families of commutative learning operators, Journal of Mathematical Psychology 4 (1967), 414–429. http://dx.doi.org/10.1016/0022-2496(67)90032-6

L. Nachbin, Topologia e ordem, (University of Chicago Press, 1950).

P. J. Nyikos and H. C. Reichel, Topologically orderable groups, General Topology and Applications 45 (5) (1998), 571–581.

Abstract Views

1105
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A Survey on the Mathematical Foundations of Axiomatic Entropy: Representability and Orderings
María-Jesús Campión, Cristina Gómez-Polo, Esteban Induráin, Armajac Raventós-Pujol
Axioms  vol: 7  issue: 2  first page: 29  year: 2018  
doi: 10.3390/axioms7020029



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt