Representations of ordered semigroups and the Physical concept of Entropy

Authors

  • Juan C. Candeal Universidad de Zaragoza
  • Juan R. de Miguel Universidad Pública de Navarra
  • Esteban Induráin Universidad Pública de Navarra
  • Ghansyam B. Mehta University of Queensland

DOI:

https://doi.org/10.4995/agt.2004.1992

Keywords:

Topological ordered sets, Utility functions, Entropy, Semigroups

Abstract

The abstract concept of entropy is interpreted through the concept of numerical representation of a totally preordered set so that the concept of composition of systems or additivity of entropy can be analyzed through the study of additive representations of totally ordered semigroups.

Downloads

Download data is not yet available.

Author Biographies

Juan C. Candeal, Universidad de Zaragoza

Departamento de AnálisisEconómico

Juan R. de Miguel, Universidad Pública de Navarra

Departamento de Matemática e Informática

Esteban Induráin, Universidad Pública de Navarra

Departamento de Matemática e Informática

Ghansyam B. Mehta, University of Queensland

Departament of Economics

References

A. Ben-Tal, A. Charles and M. Teboulle, Entropic means, Journal of Mathematical Analysis and Applications 139 (1989), 537–551. http://dx.doi.org/10.1016/0022-247X(89)90128-5

G. Birkhoff, Lattice theory (Third edition), American Mathematical Society (Rhode Island, 1967)

D. S. Bridges and G. B. Mehta, Representation of preference orderings, (Springer Verlag, Berlin, 1995). http://dx.doi.org/10.1007/978-3-642-51495-1

J. C. Candeal, J. R. De Miguel and E. Induráin, Extensive measurement: Continuous additive utility functions on semigroups, Journal of Mathematical Psychology 40 (4) (1996), 281–286. http://dx.doi.org/10.1006/jmps.1996.0029

J. C. Candeal, J. R. De Miguel and E. Induráin, Topological additively representable semigroups, Journal of Mathematical Analysis and Applications 210 (1997), 375–389. http://dx.doi.org/10.1006/jmaa.1997.5359

J. C. Candeal, J. R. De Miguel, E. Induráin and E. Oloriz, Associativity equation revisited, Publicationes Mathematicae Debrecen 51 (1-2) (1997), 133–144.

G. Cantor, Beiträge zur Begründung der transfinite Mengenlehre I, Mathematische Annalen 46 (1895), 481–512. http://dx.doi.org/10.1007/BF02124929

G. Cantor, Beiträge zur Begründung der transfinite Mengenlehre II, Mathematische Annalen 49 (1897), 207–246. http://dx.doi.org/10.1007/BF01444205

J. H. Carruth, J. F. Hildenbrandt, and R. J. Koch, The theory of topological semigroups, (Marcel Dekker, New York, 1983).

J. H. Carruth, J. F. Hildenbrandt, and R. J. Koch, The theory of topological semigroups, 2, (Marcel Dekker, New York. 1986).

J. L. B. Cooper, The foundations of Thermodynamics, Journal of Mathematical Analysis and Applications 17 (1967), 172–193. http://dx.doi.org/10.1016/0022-247X(67)90174-6

J. R. De Miguel, J. C. Candeal, and E. Induráin, Archimedeaness and additive utility on totally ordered semigroups, Semigroup Forum 52 (1996), 335–347. http://dx.doi.org/10.1007/BF02574109

G. Debreu, Representation of a preference ordering by a numerical function, in Decision processes, R. M. Thrall et al. (eds.) (John Wiley, New York, 1954).

G. Debreu, Continuous properties of Paretian utility, International Economic Review 5 (1964), 285–293. http://dx.doi.org/10.2307/2525513

P. C. Fishburn, The foundations of expected utility, (D. Reidel, Dordrecht, The Netherlands, 1982). http://dx.doi.org/10.1007/978-94-017-3329-8

L. Fuchs, Partially ordered algebraic structures, (Pergamon Press, Oxford, 1963).

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. Scott, A compendium of continuous lattices, (Springer Verlag, Heidelberg, 1980). http://dx.doi.org/10.1007/978-3-642-67678-9

R. Giles, The mathematical foundations of thermodynamics, (Pergamon Press, Oxford, 1964).

B. Girotto and S. Holzer, On the axiomatic treatment of the Φ-mean, Journal of the Italian Statistical Society 4 (3) (1995), 299–336. http://dx.doi.org/10.1007/BF02589117

K. H. Hofmann and J. D. Lawson, Linearly ordered semigroups: Historical origins and A. H. Clifford’s influence, in pp. 15–39 of Semigroup theory and its applications, edited by K. H. Hofmann and M. W. Mislove (Cambridge University Press, Cambridge, U. K. 1996).

O. Hölder, Der Axiome der Quantität und die Lehre von Mass, Leipziger Berichte Math. Phys. C1. 53 (1901), 1–64.

D. H. Krantz, R. D. Luce, P. Suppes and A. Tversky, Foundations of measurement, (Academic Press, New York and London, 1971).

E. H. Lieb and J. Yngvason, A guide to entropy and the second law of thermodynamics, Notices of the American Mathematical Society 5 (1975), 195–204.

A. A. J. Marley, Abstract one-parameter families of commutative learning operators, Journal of Mathematical Psychology 4 (1967), 414–429. http://dx.doi.org/10.1016/0022-2496(67)90032-6

L. Nachbin, Topologia e ordem, (University of Chicago Press, 1950).

P. J. Nyikos and H. C. Reichel, Topologically orderable groups, General Topology and Applications 45 (5) (1998), 571–581.

Downloads

How to Cite

[1]
J. C. Candeal, J. R. de Miguel, E. Induráin, and G. B. Mehta, “Representations of ordered semigroups and the Physical concept of Entropy”, Appl. Gen. Topol., vol. 5, no. 1, pp. 11–23, Apr. 2004.

Issue

Section

Regular Articles