On interpolative Hardy-Rogers type cyclic contractions
DOI:
https://doi.org/10.4995/agt.2024.19885Keywords:
Hardy-Rogers, interpolation, fixed point, metric spaceAbstract
Recently, Karapınar introduced a new Hardy-Rogers type contractive mapping using the concept of interpolation and proved a fixed point theorem in complete metric space. This new type of mapping, called "interpolative Hardy-Rogers type contractive mapping" is a generalization of Hardy-Rogers's fixed point theorem. Following this direction of research, in this paper, we will present some fixed point results of Hardy-Rogers-type for cyclic mappings on complete metric spaces. Moreover, an example is given to illustrate the usability of the obtained results.
Downloads
References
M. A. Al-Thafai, and N. Shahzad, Convergence and existence for best proximity points, Nonlinear Analysis 70 (2009), 3665-3671. https://doi.org/10.1016/j.na.2008.07.022
H. Aydi, E. Karapınar, and A. F. Roldán López de Hierro, w-interpolative Cirić-Reich-Rus-type contractions, Mathematics 7, no. 1 (2019), Paper no. 57. https://doi.org/10.3390/math7010057
M. Edraoui, M. Aamri, and S. Lazaiz, Fixed point theorems for set-valued Caristi type mappings in locally convex space, Adv. Fixed Point Theory 7 (2017), 500-511.
M. Edraoui, M. Aamri, and S. Lazaiz, Fixed point theorem for α-nonexpansive wrt orbits in locally convex space, J. Math. Comput. Sci. 10 (2020), 1582-1589.
M. Edraoui, A. El koufi, and S. Semami, Fixed points results for various types of interpolative cyclic contraction, Appl. Gen. Topol. 24, no. 2 (2023), 247-252. https://doi.org/10.4995/agt.2023.19515
Y. El Bekri, M. Edraoui, J. Mouline, A. Bassou, Interpolative Cirić-Reich-Rus-type contraction in G-metric spaces, Journal of Survey in Fisheries Sciences 10, no. 3 (2023), 17-20.
Y. El Bekri, M. Edraoui, J. Mouline, and A. Bassou, Cyclic coupled fixed point via interpolative Kannan type contractions, Mathematical Statistician and Engineering Applications 72, no. 2 (2023), Paper no. 24.
Y. U. Gaba, and E. Karapınar, A new approach to the interpolative contractions, Axioms 8 (2019), Paper no. 110. https://doi.org/10.3390/axioms8040110
G. E. Hardy, and T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
R. Kannan, Some results on fixed points. II, Am. Math. Mon. 76 (1969), 405-408. https://doi.org/10.1080/00029890.1969.12000228
E. Karapınar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl. 2, no. 2 (2018), 85-87. https://doi.org/10.31197/atnaa.431135
E. Karapınar, Interpolative Kannan-Meir-Keeler type contraction, Advances in the Theory of Nonlinear Analysis and its Application 5, no. 4 (2011), 611-614. https://doi.org/10.31197/atnaa.989389
E. Karapınar, A survey on interpolative and hybrid contractions, In: Mathematical Analysis in Interdisciplinary Research 179, Springer International Publishing (2019), 431-475. https://doi.org/10.1007/978-3-030-84721-0_20
E. Karapınar, R. Agarwal, and H. Aydi, Interpolative Reich-Rus-Cirić type contractions on partial metric spaces, Mathematics 6, no. 11 (2018), Paper no. 256. https://doi.org/10.3390/math6110256
E. Karapınar, A. Alid, A. Hussain, and H. Aydi, On interpolative Hardy-Rogers type multivalued contractions via a simulation function, Filomat 36, no. 8 (2022), 2847-2856. https://doi.org/10.2298/FIL2208847K
E. Karapınar, O. Alqahtani, and H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 11 (2019), Paper no. 8. https://doi.org/10.3390/sym11010008
E. Karapınar, and M. Erhan, Best proximity point on different type contractions, Applied Mathematics & Information Sciences 5, no. 3 (2011) , 558-569.
E. Karapınar, Y. M. Erhan, and A. Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci. 6 (2012), 239-244. https://doi.org/10.1186/1687-1812-2012-174
E. Karapınar, A. Fulga, and A. F. Roldán López de Hierro, Fixed point theory in the setting of (α,β,ψ,ϕ)-interpolative contractions, Adv. Differ. Equations (2021), Paper no. 339. https://doi.org/10.1186/s13662-021-03491-w
E. Karapınar, A. Fulga, and S. S. Yeşilkaya, Interpolative Meir-Keeler Mappings in modular metric spaces, Mathematics 10, no. 16 (2022), Paper no. 2986. https://doi.org/10.3390/math10162986
E. Karapınar, A. Fulga, and S. S. Yeşilkaya, New results on Perov-interpolative contractions of Suzuki type mappings, J. Funct. Spaces (2021), Art. ID 9587604. https://doi.org/10.1155/2021/9587604
E. Karpagam, and S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Analysis 74, no. 4 (2011), 1040-1046. https://doi.org/10.1016/j.na.2010.07.026
M. S. Khan, Y. M. Singh, and E. Karapınar, On the interpolative (ϕ,ψ)-type Z-contraction, UPB Sci. Bull. Ser. A 83 (2021), 25-38.
W. A. Kirk, P. S. Srinivasan, and P. Veeramani, Fixed point for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79-89.
E. Mohamed, A. Mohamed, and L. Samih, Relatively cyclic and noncyclic P-contractions in locally K-convex space, Axioms 8 (2019), Paper no. 96. https://doi.org/10.3390/axioms8030096
Sh. Rezapour, M. Derafshpour, and N. Shahzad, Best proximity point of cyclic φ-contractions in ordered metric spaces, Topological Methods in Nonlinear Analysis, to appear.
K. Safeer, and R. Ali, Interpolative contractive results for m-metric spaces, Ad.n the Theory of Nonlinear Analysis and its App. 7, no. 2 (2023), 336-347. https://doi.org/10.31197/atnaa.1220114
S. S. Yeşilkaya, C. Aydin, and Y. Aslan, A study on some multi-valued interpolative contractions, Communications in Advanced Mathematical Sciences 3, no. 4 (2020), 208-217. https://doi.org/10.33434/cams.794172
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohamed Edraoui, Amine El koufi, Mohamed Aamri
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.