On maximal nowhere dense sublocales

|

Accepted: 2024-04-23

|

Published: 2024-10-01

DOI: https://doi.org/10.4995/agt.2024.19797
Funding Data

Downloads

Keywords:

sublocale, nowhere dense, maximal nowhere dense, homogeneous maximal nowhere dense, inaccessible, almost inaccessible, remote

Supporting agencies:

This research was not funded

Abstract:

The aim of this paper is to study some variants of nowhere dense sublocales called maximal nowhere dense and homogeneous maximal nowhere dense sublocales. These concepts were initially introduced by Veksler in classical topology. We give some general properties of these sublocales and further examine their relationship with both inaccessible sublocales and remote sublocales. It turns out that a locale has all of its non-void nowhere dense sublocales maximal nowhere dense precisely when all of its its non-void nowhere dense sublocales are inaccessible. We show that the Booleanization of a locale is inaccessible with respect to every dense and open sublocale. In connection to remote sublocales, we prove that, if the supplement of an open dense sublocale S is homogeneous maximal nowhere dense, then every S#-remote sublocale is  *-remote from S. Every open localic map that sends dense elements to dense elements preserves and reflects maximal nowhere dense sublocales. If such a localic map is further injective, then it sends homogeneous maximal nowhere dense sublocales back and forth.

Show more Show less

References:

D. Baboolal, J. Picado, P. Pillay and A. Pultr, Hewitt's irresolvability and induced sublocales in spatial frames, Quaest. Math. 43 (2020), 1601-1612. https://doi.org/10.2989/16073606.2019.1646832

D. Baboolal and P. Pillay, Irreducible locales, Filomat 32, no. 10 (2018), 3443-3453. https://doi.org/10.2298/FIL1810443B

B. Banaschewski and A. Pultr, Variants of openness, Appl. Categor. Struct. 2 (1994), 331-350. https://doi.org/10.1007/BF00873038

T. Dube, Submaximality in locales, Topol. Proc. 29 (2005), 431-444.

T. Dube and M. M. Mugochi, Localic remote points revisited, Filomat 29, no. 1 (2015), 111-120. https://doi.org/10.2298/FIL1501111D

M. J. Ferreira, J. Picado and S. M. Pinto, Remainders in pointfree topology, Topol. Appl. 245 (2018), 21-45. https://doi.org/10.1016/j.topol.2018.06.007

A. V. E. Koldunov, Maximal nowhere dense sets, Siberian Math. J. 21, no. 2 (1980), 558-564. https://doi.org/10.1007/BF00995956

M. Nxumalo, Remote sublocales, Quaest. Math., to appear.

M. S. Nxumalo, Remoteness in the category of locales, Ph.D. Thesis, University of South Africa, (2023), 154 pp.

J. Picado and A. Pultr, Frames and Locales: topology without points, Springer Science and Business Media, 2011. https://doi.org/10.1007/978-3-0348-0154-6

J. Picado, A. Pultr and A. Tozzi, Locales, Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory (M. C. Pedicchio and W. Tholen, eds.), Cambridge University Press, vol. 97, 2004, pp. 49-101. https://doi.org/10.1017/CBO9781107340985.005

T. Plewe, Higher order dissolutions and Boolean coreflections of locales, J. Pure Appl. Algebra, 154, no. 1-3 (2000), 273-293. https://doi.org/10.1016/S0022-4049(99)00193-0

A. I. Veksler, Maximal nowhere dense sets and their applications to problems of existence of remote points and of weak p-points, Math. Nachr. 150, no. 1 (1991), 263-275. https://doi.org/10.1002/mana.19911500119

A. I. Veksler, Maximal nowhere dense sets in topological spaces, Izv. Vyss. Uchebn. Zaved. Math. no. 5 (1975), 9-16.

Show more Show less