Remarks on the finite derived set property
DOI:
https://doi.org/10.4995/agt.2005.1958Keywords:
Accumulation points, Urysohn spaces, Product, Function spacesAbstract
The finite derived set property asserts that any infinite subset of a space has an infinite subset with only finitely many accumulation points. Among other things, we study this property in the case of a function space with the topology of pointwise convergence.
Downloads
References
O. T. Alas, M. Tkachenko, V. Tkachuk and R. Wilson The FDS-property and the spaces in which compact sets are closed, Sci. Math. Japan, to appear.
O. T. Alas and R. G. Wilson, When a compact space is sequentially compact?, preprint.
A. V. Arhangel′skii, "Topological Function Spaces", Kluwer Academic Publishers, Dordrecht (1992)
A. Bella and O. Pavlov, Embeddings into pseudocompact spaces of countable tightness, Topology Appl. 138 (2004), 161-166. https://doi.org/10.1016/j.topol.2003.03.001
E. K. van Douwen, "The Integers and Topology", Handbook of Set-theoretic Topology (K.Kunen and J.E. Vaughan Editors), Elsevier Science Publishers B.V., Amsterdam (1984), 111 -167. https://doi.org/10.1016/B978-0-444-86580-9.50006-9
R. Engelking, "General Topology" Heldermann-Verlag, Berlin (1989).
P. Simon, Product of sequentially compact spaces, Rend. Ist. Mat. Univ. Trieste 25 (1994), 447-450.
D. Shakmatov, M. Tkachenko and R. Wilson, Transversal and T1-independent topologies, Houston J. Math. 30 (2004), 421-433.
Downloads
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.