The canonical partial metric and the uniform convexity on normed spaces
DOI:
https://doi.org/10.4995/agt.2005.1954Keywords:
Partial metric, Convexity, Normed spacesAbstract
In this paper we introduce the notion of canonical partial metric associated to a norm to study geometric properties of normed spaces. In particular, we characterize strict convexity and uniform convexity of normed spaces in terms of the canonical partial metric defined by its norm.
We prove that these geometric properties can be considered, in this sense, as topological properties that appear when we compare the natural metric topology of the space with the non translation invariant topology induced by the canonical partial metric in the normed space.
Downloads
References
B. Beauzamy, Introduction to Banach Spaces and their Geometry, North Holland Math. Studies, Amsterdam (1985).
Á. Császár, Fondements de la Topologie Générale, Budapest-Paris (1960).
P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces, Marcel Dekker, New York (1982).
H. P. A. Künzi, Nonsymmetric topology, in: Proc. Szekszárd Conference, Bolyai Soc. Math. Studies 4 1993 Hungary (Budapest 1995), 303-338.
J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin (1996). https://doi.org/10.1007/978-3-540-37732-0
S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
S. J. O'Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 806 (1996), 304-315. https://doi.org/10.1111/j.1749-6632.1996.tb49177.x
S. Oltra, S. Romaguera and E. A. Sánchez-Pérez, Bicompleting weightable quasi-metric spaces and partial metric spaces, Rend. Circ. Mat. Palermo. Serie II, T.LI (2002), 151-162. https://doi.org/10.1007/BF02871458
S. Oltra and E. A. Sánchez-Pérez, Order properties and p-metrics on Köthe function spaces, Houston J. Math., to appear.
W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).
P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511608735
Downloads
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.