Compactness properties of bounded subsets of spaces of vector measure integrable functions and factorization of operators

Authors

  • Lluís M. Garcia-Raffi Universitat Politècnica de València
  • E. A. Sánchez-Pérez Universitat Politècnica de València

DOI:

https://doi.org/10.4995/agt.2005.1952

Keywords:

Compactness, Vector measures, Integration, Factorization

Abstract

Using compactness properties of bounded subsets of spaces of vector measure integrable functions and a representation theorem for q-convex Banach lattices, we prove a domination theorem for operators between Banach lattices. We generalize in this way several classical factorization results for operators between these spaces, as psumming operators.

Downloads

Download data is not yet available.

Author Biographies

Lluís M. Garcia-Raffi, Universitat Politècnica de València

Departamento de Matemática Aplicada

E. A. Sánchez-Pérez, Universitat Politècnica de València

Departamento de Matemática Aplicada

References

G. P. Curbera, Operators into L1 of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), 317-330. https://doi.org/10.1007/BF01444717

G. P. Curbera, Banach space properties of L1 of a vector measure, Proc. Amer. Math. Soc. 123 (1995), 3797-3806. https://doi.org/10.2307/2161909

A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity 5 (2001), 153-175. https://doi.org/10.1023/A:1011466509838

A. Defant and K. Floret, "Tensor Norms and Operator Ideals", North Holland, Amsterdam (1993).

J. Diestel, H. Jarchow and A. Tonge, "Absolutely Summing Operators", Cambridge studies in advanced mathematics 43, Cambridge (1995). https://doi.org/10.1017/CBO9780511526138

J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI. 1977. https://doi.org/10.1090/surv/015

A. Fernández, F. Mayoral, F. Naranjo, F. Sáez and E. A. Sánchez-Pérez, Spaces of p-integrable functions with respect to a vector measure, Positivity, to appear.

J. Lindenstrauss and L. Tzafriri, "Classical Banach Spaces I and II", Springer, Berlin (1996). https://doi.org/10.1007/978-3-540-37732-0

F. Martínez-Giménez and E. A. Sánchez-Pérez, Vector measure range duality and factorizations of (D, p)-summing operators from Banach function spaces, Bull. Braz. Math. Soc., New Series 35(1)(2004), 51-69. https://doi.org/10.1007/s00574-004-0003-1

S. Okada and W. J. Ricker, The range of the integration map of a vector measure, Arch. Math. 64(1995), 512-522. https://doi.org/10.1007/BF01195133

S. Okada, W. J. Ricker and L. Rodríguez-Piazza, Compactness of the integration operator associated with a vector measure, Studia Math. 150(2) (2002), 133-149. https://doi.org/10.4064/sm150-2-3

A. Pietsch, "Operator Ideals", North-Holland, Amsterdam (1980).

E. A. Sánchez-Pérez, Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces, Illinois J. Math. 45(3) (2001), 907-923. https://doi.org/10.1215/ijm/1258138159

E. A. Sánchez-Pérez, Spaces of integrable functions with respect to vector measures of convex range and factorization of operators from Lp-spaces, Pacific J. Math. 207 (2) (2002), 489-495. https://doi.org/10.2140/pjm.2002.207.489

P. Wojtaszczyk, "Banach Spaces for Analysts", Cambridge University Press. Cambridge. 1991. https://doi.org/10.1017/CBO9780511608735

Downloads

How to Cite

[1]
L. M. Garcia-Raffi and E. A. Sánchez-Pérez, “Compactness properties of bounded subsets of spaces of vector measure integrable functions and factorization of operators”, Appl. Gen. Topol., vol. 6, no. 2, pp. 135–142, Oct. 2005.

Issue

Section

Regular Articles