T_0 functional Alexandroff topologies are partial metrizable

|

Accepted: 2023-09-19

|

Published: 2024-10-01

DOI: https://doi.org/10.4995/agt.2024.19401
Funding Data

Downloads

Keywords:

functional Alexandroff topology, partial metric, pseudopartial metric

Supporting agencies:

This research was not funded

Abstract:

If f : X → X is a function, the associated functional Alexandroff topology on X is the topology whose closed sets are { A ⊆ X : f ( A ) ⊆ A } . We prove that every functional Alexandroff topology is pseudopartial metrizable and every T0 functional Alexandroff topology is partial metrizable. 

Show more Show less

References:

P. Alexandroff, Diskrete Räume, Mat. Sb 44, no. 3 (1937), 501-519.

I. Altun, and S. Romaguera, Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Appl. Anal. Discrete Math. 6, no. 2 (2012), 247-256. https://doi.org/10.2298/AADM120322009A

A. B. Amor, S. Lazaar, T. Richmond, and H. Sabri, k-primal spaces, Topology Appl. 309 (2022), Paper No. 107907. https://doi.org/10.1016/j.topol.2021.107907

F. Ayatollah Zadeh Shirazi, S. Karimzadeh Dolatabad, and S. Shamloo, Interaction between cellularity of Alexandroff spaces and entropy of generalized shift maps, Commentationes Mathematicae Universitatis Carolinae 57, no. 3 (2016), 397-410. https://doi.org/10.14712/1213-7243.2015.174

F. Ayatollah Zadeh Shirazi, and N. Golsetani, Functional Alexandroff spaces, Hacet. J. Math. Stat. 40, no. 4 (2011), 515-522.

M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metric spaces, American Mathematical Monthly 116 (2009), 708-718. https://doi.org/10.4169/193009709X460831

O. Echi, The categories of flows of Set and Top, Topology Appl. 159, no. 9 (2012), 2357-2366. https://doi.org/10.1016/j.topol.2011.11.059

A. Guale, and J. Vielma, A topological approach to the Ulam-Kakutani-Collatz conjecture, Topology Appl. 256 (2019), 1-6. https://doi.org/10.1016/j.topol.2019.01.012

M. Jacob, and T. Richmond, The lattice of functional Alexandroff topologies, Order 38, no. 1 (2021), 1-11. https://doi.org/10.1007/s11083-020-09523-6

E. Khalimsky, R. Kopperman, and P. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36, no. 1 (1990), 1-17. https://doi.org/10.1016/0166-8641(90)90031-V

T. Y. Kong, R. Kopperman, and P. Meyer, A topological approach to digital topology, Amer. Math. Monthly 98, no. 10 (1991), 901-917. https://doi.org/10.1080/00029890.1991.12000810

R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metrizability in value quantales, Applied General Topology 5, no. 1 (2004), 115-127. https://doi.org/10.4995/agt.2004.2000

R. Kopperman, S. Matthews, and H. Pajoohesh, Completions of partial metrics into value lattices, Topology Appl. 156 (2009), 1534-1544. https://doi.org/10.1016/j.topol.2009.01.002

S. Lazaar, H. Sabri, and R. Tahri, On some topological properties in the class of Alexandroff spaces, Turkish J. Math. 45, no. 1 (2021), 479--486. https://doi.org/10.3906/mat-2010-90

S. Lazaar, T. Richmond, and H. Sabri, The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces, Comm. Algebra 47, no. 9 (2019), 3818-3829. https://doi.org/10.1080/00927872.2019.1570240

S. G. Matthews, The topology of partial metric spaces, Computer Science, 1992

S. G. Matthews, Partial metric topology, Proc. 8th summer conference on topology and its applications, ed S. Andima et al., New York Academy of Sciences Annals 728 (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x

S. Matthews, and H. Pajoohesh, Partial metrics valued into $[0,infty]$, preprint.

M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315, no. 1 (2004), 135-149. https://doi.org/10.1016/j.tcs.2003.11.016

O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6, no. 2 (2005), 229-240. https://doi.org/10.4995/agt.2005.1957

Show more Show less