Compactness in the endograph uniformity
DOI:
https://doi.org/10.4995/agt.2024.19400Keywords:
Fuzzy sets, Endograph uniformity, Endograph metric, Sendograph uniformity, Sendograph metric, Completeness, CompactnessAbstract
Given a uniform space (X,U), we denote by F*(X) to the family of fuzzy sets u in (X,U) such that u is normal and upper semicontinuous. Let UE be the endograph uniformity on F*(X). In this paper, we mainly characterize totally bounded and compact substes in the uniform space (F*(X),UE).
Downloads
References
R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
J. J. Font, D. Sanchis, and M. Sanchis, Completeness, metrizability and compactness in spaces of fuzzy-number-valued functions, Fuzzy Sets and Systems 353 (2018), 124-136. https://doi.org/10.1016/j.fss.2018.05.006
H. Huang, Characterizations of endograph metric and Γ-convergence on fuzzy, Fuzzy Sets and Systems 350 (2018), 55-85. https://doi.org/10.1016/j.fss.2018.02.014
H. Huang, Properties of several fuzzy set spaces, arXiv:1910.02205v2 [math.GM].
G. Huang, G.-B. Huang, S. Song, and K. You, Trends in extreme learning machines: a review, Neural Netw. 61 (2015), 32-48. https://doi.org/10.1016/j.neunet.2014.10.001
D. Jardón, I. Sánchez and M. Sanchis, Fuzzy sets on uniform spaces, preprint.
D. Jardón, I. Sánchez and M. Sanchis, Some questions about Zadeh's extension on metric spaces, Fuzzy Sets Syst. 379 (2020), 115-124. https://doi.org/10.1016/j.fss.2018.10.019
J. L. Kelley, General Topology, Springer, New York, NY, USA, 1975.
P. E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets Syst. 4, no. 2 (1980), 193-201. https://doi.org/10.1016/0165-0114(80)90036-6
J. Kupka, On fuzzifications of discrete dynamical systems, Information Sciences 181 (2011), 2858-2872. https://doi.org/10.1016/j.ins.2011.02.024
E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society 71, no. 1 (1951), 152-182. https://doi.org/10.1090/S0002-9947-1951-0042109-4
K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology and its Applications (1974), 217-233. https://doi.org/10.1016/0016-660X(74)90023-3
M. Rojas-Medar, and H. Román-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets Syst. 80 (1996), 217-224. https://doi.org/10.1016/0165-0114(95)00182-4
F. Scarselli, and A. C. Tsoi, Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results, Neural Netw. 11, no. 1 (1998), 15-37. https://doi.org/10.1016/S0893-6080(97)00097-X
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.