Compactness in the endograph uniformity

Iván Sánchez

https://orcid.org/0000-0002-4356-9147

Mexico

Universidad Autónoma Metropolitana image/svg+xml

Departamento de Matemáticas

|

Accepted: 2023-07-30

|

Published: 2024-04-02

DOI: https://doi.org/10.4995/agt.2024.19400
Funding Data

Downloads

Keywords:

Fuzzy sets, Endograph uniformity, Endograph metric, Sendograph uniformity, Sendograph metric, Completeness, Compactness

Supporting agencies:

This research was not funded

Abstract:

Given a uniform space (X,U), we denote by F*(X) to the family of fuzzy sets u in (X,U) such that u is normal and upper semicontinuous. Let UE be the endograph uniformity on F*(X). In this paper, we mainly characterize totally bounded and compact substes in the uniform space (F*(X),UE).

 

Show more Show less

References:

R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

J. J. Font, D. Sanchis, and M. Sanchis, Completeness, metrizability and compactness in spaces of fuzzy-number-valued functions, Fuzzy Sets and Systems 353 (2018), 124-136. https://doi.org/10.1016/j.fss.2018.05.006

H. Huang, Characterizations of endograph metric and Γ-convergence on fuzzy, Fuzzy Sets and Systems 350 (2018), 55-85. https://doi.org/10.1016/j.fss.2018.02.014

H. Huang, Properties of several fuzzy set spaces, arXiv:1910.02205v2 [math.GM].

G. Huang, G.-B. Huang, S. Song, and K. You, Trends in extreme learning machines: a review, Neural Netw. 61 (2015), 32-48. https://doi.org/10.1016/j.neunet.2014.10.001

D. Jardón, I. Sánchez and M. Sanchis, Fuzzy sets on uniform spaces, preprint.

D. Jardón, I. Sánchez and M. Sanchis, Some questions about Zadeh's extension on metric spaces, Fuzzy Sets Syst. 379 (2020), 115-124. https://doi.org/10.1016/j.fss.2018.10.019

J. L. Kelley, General Topology, Springer, New York, NY, USA, 1975.

P. E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets Syst. 4, no. 2 (1980), 193-201. https://doi.org/10.1016/0165-0114(80)90036-6

J. Kupka, On fuzzifications of discrete dynamical systems, Information Sciences 181 (2011), 2858-2872. https://doi.org/10.1016/j.ins.2011.02.024

E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society 71, no. 1 (1951), 152-182. https://doi.org/10.1090/S0002-9947-1951-0042109-4

K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology and its Applications (1974), 217-233. https://doi.org/10.1016/0016-660X(74)90023-3

M. Rojas-Medar, and H. Román-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets Syst. 80 (1996), 217-224. https://doi.org/10.1016/0165-0114(95)00182-4

F. Scarselli, and A. C. Tsoi, Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results, Neural Netw. 11, no. 1 (1998), 15-37. https://doi.org/10.1016/S0893-6080(97)00097-X

Show more Show less