The degree of nondensifiability of linear bounded operators and its applications
DOI:
https://doi.org/10.4995/agt.2024.19371Keywords:
linear operators, compact operators, degree of nondensifiability, α -dense curves, Hyers-Ulam stability constantAbstract
In the present paper we define the degree of nondensifiability (DND for short) of a bounded linear operator T on a Banach space and analyze its properties and relations with the Hausdorff measure of non-compactness (MNC for short) of T. As an application of our results, we have obtained a formula to find the essential spectral radius of a bounded operator T on a Banach space as well as we have provided the best possible lower bound for the Hyers-Ulam stability constant of T in terms of the aforementioned DND.
Downloads
References
Y. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics vol. 50, American Math. Soc., Providence, 2002. https://doi.org/10.1090/gsm/050
R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measure of noncompactness and condensing operators,Birkhäuser Verlag Basel, 1992. https://doi.org/10.1007/978-3-0348-5727-7
A .G. Aksoy and J. M. Almira, On approximation schemes and compactness, Proceedings of the first conference on classical and functional analysis, Azuga-Romania (2014), 5-24.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
J. Appell, Measure of noncompactness and some applications, Fixed Point Theory 6 (2005), 157-229.
J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Birkhäuser Verlag, 1997. https://doi.org/10.1007/978-3-0348-8920-9
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237. https://doi.org/10.1090/S0002-9904-1951-09511-7
J. Brzdęk, D. Popa, I. Raşa and B. Xu, Ulam Stability of Operators, Academic Press 2018. https://doi.org/10.1007/978-3-030-28972-0
C. Buşe, D. O'Regan and O. Saierli, Hyers-Ulam stability for linear differences with time dependent and periodic coefficients, Symmetry 11 (2019). https://doi.org/10.3390/sym11040512
E. Chafai and M. Boumazgour, Some perturbation results for ascent and descent via measure of non-compactness, Filomat 32 (2018), 3495-3504. https://doi.org/10.2298/FIL1810495C
Y. Cherruault and G. Mora, Optimisation Globale. Théorie des Courbes α-denses, Económica, Paris, 2005.
D. E. Edmuns and W. D. Evans, Spectral Theory and Differential Operators, Oxford University Press, 1987.
G. García, A quantitative version of the Arzelá-Ascoli theorem based on the degree of nondensifiability and applications, Appl. Gen. Topol. 10 (2019), 265-279. https://doi.org/10.4995/agt.2019.10930
G. García, Existence of solutions for infinite systems of ordinary differential equations by densifiability techniques, Filomat 32 (2018), 3419-3428. https://doi.org/10.2298/FIL1810419G
G. García, Solvability of initial value problems with fractional order differential equations in Banach spaces by alpha-dense curves, Fract. Calc. Appl. Anal. 20 (2017), 646-661. https://doi.org/10.1515/fca-2017-0034
G. García and G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, J. Math. Anal. Appl. 472, no. (2019), 1220-1235. https://doi.org/10.1016/j.jmaa.2018.11.073
G. García and G. Mora, The degree of convex nondensifiability in Banach spaces, J. Convex Anal. 22 (2015), 871-888.
G. García and G. Mora, On the Ulam-Hyers stability of the complex functional equation F(z)+F(2z)+...+F(nz)=0, Aequat. Math. 94 (2020), 899-911. https://doi.org/10.1007/s00010-019-00693-2
G. García and G. Mora, Projective limits of generalized scales of Banach spaces and applications, Ann. Funct. Anal. 13 (2022), 76. https://doi.org/10.1007/s43034-022-00224-2
O. Hatori, K. Kobayashi, T. Miura, H. Takagi and S. E. Takahasi, On the best constant of Hyers-Ulam stability, J. Nonlinear Convex Anal. 5 (2004), 387-393.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. US 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, 1961.
S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optim. Appl., vol. 48, Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9637-4
J. L. Kelley, General Topology, D. van Nostrand, New York, 1955.
Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (2010), 306-309. https://doi.org/10.1016/j.aml.2009.09.020
T. Miura, S. Miyajima and S. I. Takahasi, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. 258 (2003), 90-96. https://doi.org/10.1002/mana.200310088
G. Mora, The Peano curves as limit of α-dense curves, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 9 (2005), 23-28.
G. Mora, On the Ulam stability of F(z)+F(2z)=0, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 114 (2020), 108. https://doi.org/10.1007/s13398-020-00846-y
G. Mora and Y. Cherruault, Characterization and generation of α-dense curves, Computers Math. Applic. 33 (1997), 83-91. https://doi.org/10.1016/S0898-1221(97)00067-9
G. Mora and J. A. Mira, Alpha-dense curves in infinite dimensional spaces, Int. J. Pure Appl. Math. 5 (2003), 437-449.
G. Mora and D. A. Redtwitz, Densifiable metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105 (2011), 71-83. https://doi.org/10.1007/s13398-011-0005-y
M. Mursaleen and K. J. Ansari, On the stability of some positive linear operators from approximation theory, Bulletin of Mathematical Sciences 5 (2015), 147-157. https://doi.org/10.1007/s13373-015-0064-z
D. Popa, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Difference Equ. 2005 (2005), Article ID 407076. https://doi.org/10.1155/ADE.2005.101
D. Popa and I. Raşa, On the best constant in Hyers-Ulam stability of some positive linear operators, J. Math. Anal. Appl. 412 (2014), 103-108. https://doi.org/10.1016/j.jmaa.2013.10.039
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
V. Rakočević, Measure of noncompactness and some applications, Filomat 12 (1998), 87-120.
W. Rudin, Functional Analysis 2nd ed., MacGraw-Hill, New York, 1991.
H. Takagi, T. Miura and S. E. Takahasi, Essential norm and stability constant of weighted composition operators on C(X), Bull. Korean Math. Soc. 40 (2003), 583-591. https://doi.org/10.4134/BKMS.2003.40.4.583
S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York (1960).
S. Willard, General Topology, Dover Inc. Pubs., New York 1970.
A. Zada, U. Riaz and F. Khan, Hyers-Ulam stability of impulsive integral equations, Bollettino dell Unione Matematica Italiana 12 (2019), 453-467. https://doi.org/10.1007/s40574-018-0180-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gonzalo García, Gaspar Mora
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.