On nearly Hausdorff compactifications

Sejal Shah, T.K. Das


We introduce and study here the notion of nearly Hausdorffness, a separation axiom, stronger than T1 but weaker than T2. For a space X, from a subfamily of the family of nearly Hausdorff spaces, we construct a compact nearly Hausdorff space rX containing X as a densely C*-embedded subspace. Finally, we discuss when rX is βX.


Regular closed set; Filter; Compactification; Wallman base

Full Text:



E. Cech, Topological Spaces, (John Wiley and Sons Ltd., 1966).

T. K. Das, On Projective Lift and Orbit Space, Bull. Austral. Math. Soc. 50 (1994), 445-449. http://dx.doi.org/10.1017/S0004972700013551

J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, (Springer-Verlag, 1988). http://dx.doi.org/10.1007/978-1-4612-3712-9

L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, (Springer-Verlag, 1978). http://dx.doi.org/10.1007/978-1-4612-6290-9

S. Willard, General Topology, (Addition-Wesley Pub. Comp., 1970).

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt