On nearly Hausdorff compactifications

Authors

  • Sejal Shah The Maharaja Sayajirao University of Baroda
  • T.K. Das University of Baroda

DOI:

https://doi.org/10.4995/agt.2006.1937

Keywords:

Regular closed set, Filter, Compactification, Wallman base

Abstract

We introduce and study here the notion of nearly Hausdorffness, a separation axiom, stronger than T1 but weaker than T2. For a space X, from a subfamily of the family of nearly Hausdorff spaces, we construct a compact nearly Hausdorff space rX containing X as a densely C*-embedded subspace. Finally, we discuss when rX is βX.

Downloads

Download data is not yet available.

Author Biographies

Sejal Shah, The Maharaja Sayajirao University of Baroda

Department of Mathematics, Faculty of Science

T.K. Das, University of Baroda

Department of Mathematics, Faculty of Science

References

E. Cech, Topological Spaces, (John Wiley and Sons Ltd., 1966).

T. K. Das, On Projective Lift and Orbit Space, Bull. Austral. Math. Soc. 50 (1994), 445-449. http://dx.doi.org/10.1017/S0004972700013551

J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, (Springer-Verlag, 1988). http://dx.doi.org/10.1007/978-1-4612-3712-9

L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, (Springer-Verlag, 1978). http://dx.doi.org/10.1007/978-1-4612-6290-9

S. Willard, General Topology, (Addition-Wesley Pub. Comp., 1970).

Downloads

How to Cite

[1]
S. Shah and T. Das, “On nearly Hausdorff compactifications”, Appl. Gen. Topol., vol. 7, no. 1, pp. 125–130, Apr. 2006.

Issue

Section

Regular Articles