Tightness of function spaces
DOI:
https://doi.org/10.4995/agt.2006.1935Keywords:
Function spaces, Fan tightness, Hurewicz spaces, Cardinal functionsAbstract
The purpose of this paper is to give higher cardinality versions of countable fan tightness of function spaces obtained by A. Arhangel’skiı. Let vet(X), ωH(X) and H(X) denote respectively the fan tightness, ω-Hurewicz number and Hurewicz number of a space X, then vet(Cp(X)) = ωH(X) = sup{H(Xn) : n 2 N}.
Downloads
References
A. Arhangel’skii, Hurewicz spaces, analytic sets, and fan tightness of functions, Soviet Math. Dokl. 33(1986), 396-399.
A. Arhangel’skii, Topological function spaces (Kluwer Academic Publishers, Dordrecht, 1992). http://dx.doi.org/10.1007/978-94-011-2598-7
R. Engelking, General Topology(revised and completed edition)(Heldermann Verlag, Berlin, 1989).
J. Gerlits, Zs. Nagy and Z. Szentmiklossy, Some convergence properties in function space, In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium (Heldermann Verlag, Berlin, 1988), 211-222.
W. Hurewicz, Über folgen stetiger fukktionen, Fund. Math. 9(1927), 193-204.
Lj. D. Kocinac, On radiality of function spaces, In: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium (Heldermann Verlag, Berlin, 1988), 337-344.
Lj. D. Kocinac, Closure properties of function spaces, Applied General Topology 4(2003)(2), 255-261.
S. Lin, C. Liu and H. Teng, Fan tightness and strong Fréchet property of Ck(X), Adv. Math.(China) 23:3(1994), 234-237(in Chinese).
R. A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., No. 1315(Springer Verlag, Berlin, 1988).
Downloads
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.