Every infinite group can be generated by P-small subset

Dikran Dikranjan, Igor V. Protasov

Abstract

For every infinite group G and every set of generators S of G, we construct a system of generators in S which is small in the sense of Prodanov.

Keywords

Group; Large set; Small set; P-small set

Full Text:

PDF

References

A. Bella and V. Malykhin, Small, large and other subsets of a group, Questions and Answers in General Topology 17 (1967), 183–197.

D. Dikranjan, U. Marconi and R. Moresco, Groups with small set of generators, Applied General Topology 4 (2) (2003), 327–350.

R. Gusso, Large and small sets with respect to homomorphisms and products of groups, Applied General Topology 3 (2) (2002), 133–143.

V.Malykhin and R. Moresco, Small generated groups, Questions and Answers in General Topology 19 (1) (2001), 47–53.

Iv. Prodanov, Some minimal group topologies are precompact, Math.Ann. 227 (1977), 117–125. http://dx.doi.org/10.1007/BF01350188

I. Protasov, Every infinite group can be generated by small subset, in: Third Intern. Algebraic Conf. in Ukraine, Sumy, (2001), 92–94.

I. Protasov and T. Banakh, Ball Structures and Colorings of Graphs and Groups, Matem. Stud. Monogr. Series, Vol 11, Lviv, 2003.

Abstract Views

1008
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Preservation and reflection of size properties of balleans
Dikran Dikranjan, Nicolò Zava
Topology and its Applications  vol: 221  first page: 570  year: 2017  
doi: 10.1016/j.topol.2017.02.008



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt