Connected metrizable subtopologies and partitions into copies of the Cantor set

Irina Druzhinina

Abstract

We prove under Martin’s Axiom that every separable metrizable space represented as the union of less than 2 ω zero-dimensional compact subsets is zero-dimensional. On the other hand, we show in ZFC that every separable completely metrizable space without isolated points is the union of 2ω pairwise disjoint copies of the Cantor set.


Keywords

Metrizable space; Completely metrizable space; Condensation; Connected metrizable subtopology; Cantor set; Zero-dimensional space; Martin’s Axiom

Full Text:

PDF

References

A.V. Arhangel’skii and V. I. Ponomarev, Fundamentals of General Topology: Problems and Exercises (Translated from the Russian), Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1984. xvi+415 pp.

R. Engelking, General Topology, Helderman Verlag, Berlin 1989.

P. Delaney and W. Just, Two remarks on weaker connected topologies, Comment. Math. Univ. Carolin. 40 no. 2 (1999), 327–329.

I. Druzhinina, Condensations onto connected metrizable spaces, Houston J. Math. 30 no. 3, (2004), 751–766.

K. Kunen, Set Theory, North Holland, 1980.

M.G. Tkachenko, V.V. Tkachuk, V. Uspenskij, and R.G. Wilson, In quest of weaker connected topologies, Comment. Math. Univ. Carolin. 37 no. 4 (1996), 825–841.

Abstract Views

1245
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt