On topological groups of monotonic automorphisms

Authors

DOI:

https://doi.org/10.4995/agt.2024.18989

Keywords:

linearly ordered topological space, generalized ordered topological space, topology of point-wise convergence, paratopological group, topological group, monotonic automorphism

Abstract

We study topological groups of monotonic automorphisms on a generalized ordered space L. We find a condition that is necessary and sufficient for the set of all monotonic automorphism on L along with the function composition and the topology of point-wise convergence to be a topological group.

Downloads

Download data is not yet available.

References

A. Arhangelskii, Topological function spaces, Math. Appl. 78, Kluwer Academic Publishers, Dordrecht, 1992.

A. Arhangelskii and M. Tkachenko, Topological groups and related structures, Atlantis Press/World Scientific, 2008. https://doi.org/10.2991/978-94-91216-35-0

H. Bennet and D. J. Lutzer, Linearly ordered and generalized ordered spaces, Encyclopedia of General Topology, Elsevier, 2004. https://doi.org/10.1016/B978-044450355-8/50087-8

R. Engelking, General topology, PWN, Warszawa, 1977.

D. J. Lutzer, On generalized ordered spaces, Dissertationes Mathematicae, Warszawa, 1970, pp. 33.

J. Nagata, Modern general topology, North Holland, ch. VIII, 1985, 456-466.

B. V. Sorin, Compactifications of homeomorphism groups of linearly ordered compacta, Mathematical Notes 112 (2022), 126-141. https://doi.org/10.1134/S0001434622070148

Downloads

Published

2024-04-02

How to Cite

[1]
R. Buzyakova, “On topological groups of monotonic automorphisms”, Appl. Gen. Topol., vol. 25, no. 1, pp. 229–235, Apr. 2024.

Issue

Section

Regular Articles