Some network-type properties of the space of G-permutation degree
DOI:
https://doi.org/10.4995/agt.2023.18985Keywords:
functor of permutation degree, network, cs-network, cs∗-network, cn-network, ck-networkAbstract
In this paper the network-type properties (network,cs−network,cs∗−network,cn−network andck−network) of the spaceSPnGXofG-permutation degree ofXare studied. It is proved that:(1) IfXis aT1-space that has a network of cardinality≤κ, thenSPnGXhas a network of cardinality≤κ;(2) IfXis aT1-space that has acs-network (resp.cs∗-network) ofcardinality≤κ, thenSPnGXhas acs-network (resp.cs∗-network) ofcardinality≤κ;(3) IfXis aT1-space that has acn-network (resp.ck-network) ofcardinality≤κ, thenSPnGXhas acn-network (resp.ck−network) ofcardinality≤κ.
Downloads
References
R. B. Beshimov, Some properties of the functor $O_{beta}$, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5
R. B. Beshimov, D. N. Georgiou and N. K. Mamadaliev, On τ-nounded spaces and hyperspaces, Filomat 36, no. 1 (2022), 187-193. https://doi.org/10.2298/FIL2201187B
R. B. Beshimov, D. N. Georgiou and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566
R. B. Beshimov and D. T. Safarova, Some topological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021), 2744-2753. https://doi.org/10.1134/S1995080221120088
R. Engelking, General Topology (Heldermannn, Berlin, 1989).
V. V. Fedorchuk, Covariant functors in the category of compacta absolute retracts and Q-manifolds, Russ. Math. Surv. 36 (1981), 211-233. https://doi.org/10.1070/RM1981v036n03ABEH004251
V. V. Fedorchuk and V. V. Filippov, Topology of Hyperspaces and its Applications, Znanie, Moscow, 1989. (In Russian).
S. S. Gabriyelyan and J. Kakol, On $mathfrak{B}$-spaces and related concepts, Topology Appl. 191 (2015), 178-198. https://doi.org/10.1016/j.topol.2015.05.085
Lj. D. R. Kočinac, Closure properties of function spaces, Appl. Gen. Topol. 4 (2003), 255-261. https://doi.org/10.4995/agt.2003.2030
Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11 (2022), 290. https://doi.org/10.3390/axioms11060290
Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Tightness-type properties of the space of permutation degree, Mathematics 10 (2022), 3341. https://doi.org/10.3390/math10183341
Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36, no. 20 (2022), 7059-7066. https://doi.org/10.20944/preprints202208.0386.v1
Z. Li, Q. Li and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15-21.
Z. Li, F. Lin and C. Liu, Networks on free topological groups, Topology Appl. 180 (2015), 186-198. https://doi.org/10.1016/j.topol.2014.11.016
F. G. Mukhamadiev, On certain cardinal properties of the $N_{tau}^{varphi}$-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5
T. K. Yuldashev and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011
T. K. Yuldashev and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.