Some network-type properties of the space of G-permutation degree

Authors

DOI:

https://doi.org/10.4995/agt.2023.18985

Keywords:

functor of permutation degree, network, cs-network, cs∗-network, cn-network, ck-network

Abstract

In this paper the network-type properties (network,cs−network,cs∗−network,cn−network andck−network) of the spaceSPnGXofG-permutation degree ofXare studied. It is proved that:(1) IfXis aT1-space that has a network of cardinality≤κ, thenSPnGXhas a network of cardinality≤κ;(2) IfXis aT1-space that has acs-network (resp.cs∗-network) ofcardinality≤κ, thenSPnGXhas acs-network (resp.cs∗-network) ofcardinality≤κ;(3) IfXis aT1-space that has acn-network (resp.ck-network) ofcardinality≤κ, thenSPnGXhas acn-network (resp.ck−network) ofcardinality≤κ.

Downloads

Download data is not yet available.

Author Biographies

Lj. D.R Kočinac, University of Niš

Faculty of Sciences and Mathematics

F. G. Mukhamadiev, National University of Uzbekistan

Faculty of Mathematics

A. K. Sadullaev, Yeoju Technical Institute in Tashkent

Department of Exact sciences

Sh. U. Meyliev, National University of Uzbekistan

Faculty of Mathematics

References

R. B. Beshimov, Some properties of the functor $O_{beta}$, J. Math. Sci. 133 (2006), 1599-1601. https://doi.org/10.1007/s10958-006-0070-5

R. B. Beshimov, D. N. Georgiou and N. K. Mamadaliev, On τ-nounded spaces and hyperspaces, Filomat 36, no. 1 (2022), 187-193. https://doi.org/10.2298/FIL2201187B

R. B. Beshimov, D. N. Georgiou and R. M. Zhuraev, Index boundedness and uniform connectedness of space of the G-permutation degree, Appl. Gen. Topol. 22, no. 2 (2021), 447-459. https://doi.org/10.4995/agt.2021.15566

R. B. Beshimov and D. T. Safarova, Some topological properties of a functor of finite degree, Lobachevskii J. Math. 42 (2021), 2744-2753. https://doi.org/10.1134/S1995080221120088

R. Engelking, General Topology (Heldermannn, Berlin, 1989).

V. V. Fedorchuk, Covariant functors in the category of compacta absolute retracts and Q-manifolds, Russ. Math. Surv. 36 (1981), 211-233. https://doi.org/10.1070/RM1981v036n03ABEH004251

V. V. Fedorchuk and V. V. Filippov, Topology of Hyperspaces and its Applications, Znanie, Moscow, 1989. (In Russian).

S. S. Gabriyelyan and J. Kakol, On $mathfrak{B}$-spaces and related concepts, Topology Appl. 191 (2015), 178-198. https://doi.org/10.1016/j.topol.2015.05.085

Lj. D. R. Kočinac, Closure properties of function spaces, Appl. Gen. Topol. 4 (2003), 255-261. https://doi.org/10.4995/agt.2003.2030

Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some cardinal and geometric properties of the space of permutation degree, Axioms 11 (2022), 290. https://doi.org/10.3390/axioms11060290

Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Tightness-type properties of the space of permutation degree, Mathematics 10 (2022), 3341. https://doi.org/10.3390/math10183341

Lj. D. R. Kočinac, F. G. Mukhamadiev and A. K. Sadullaev, Some topological and cardinal properties of the space of permutation degree, Filomat 36, no. 20 (2022), 7059-7066. https://doi.org/10.20944/preprints202208.0386.v1

Z. Li, Q. Li and X. Zhou, On sequence-covering msss-maps, Mat. Vesnik 59 (2007), 15-21.

Z. Li, F. Lin and C. Liu, Networks on free topological groups, Topology Appl. 180 (2015), 186-198. https://doi.org/10.1016/j.topol.2014.11.016

F. G. Mukhamadiev, On certain cardinal properties of the $N_{tau}^{varphi}$-nucleus of a space X, J. Math. Sci. 245 (2020), 411-415. https://doi.org/10.1007/s10958-020-04704-5

T. K. Yuldashev and F. G. Mukhamadiev, The local density and the local weak density in the space of permutation degree and in Hattori space, Ural. Math. J. 6, no. 2 (2020), 108-116. https://doi.org/10.15826/umj.2020.2.011

T. K. Yuldashev and F. G. Mukhamadiev, Caliber of space of subtle complete coupled systems, Lobachevskii J. Math. 42 (2021), 3043-3047. https://doi.org/10.1134/S1995080221120398

Downloads

Published

2023-04-05

How to Cite

[1]
L. D. Kočinac, F. G. . Mukhamadiev, A. K. Sadullaev, and S. U. Meyliev, “Some network-type properties of the space of G-permutation degree”, Appl. Gen. Topol., vol. 24, no. 1, pp. 229–237, Apr. 2023.

Issue

Section

Regular Articles