CL(R) is simply connected under the Vietoris topology

Authors

  • N.C. Esty Marshall University

DOI:

https://doi.org/10.4995/agt.2007.1891

Keywords:

Hyperspace, Vietoris topology, Simply connected, Path connected, Time scales

Abstract

In this paper we present a proof by construction that the hyperspace CL(R) of closed, nonemtpy subsets of R is simply connected under the Vietoris topology. This is useful in considering the convergence of time scales. We also present a construction of the (known) fact that this hyperspace is also path connected, as part of the proof.

Downloads

Download data is not yet available.

Author Biography

N.C. Esty, Marshall University

Department of Mathematics

References

G. Beer and R. K. Tamaki, On hit-and-miss hyperspace topologies, Comment. Math. Univ. Carolinae 34 (1993), 717–728.

M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser; 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser; 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9

K. Borsuk and S. Marzurkiewicz, Sur l’hyperspace d’un continu, C. R. Soc. Sc. Varsovie 24 (1931), 142–152.

C. Constantini, S. Levi and J. Pelant, Compactness and local compactness in hyperspaces, Topology Applications 123 (2002), 573–608. http://dx.doi.org/10.1016/S0166-8641(01)00222-X

C. Constantini andW. Kubis, Paths in hypserspaces , App. Gen. Top. 4 (2003), 377–390.

D. W. Curtis, Hyperspaces of noncompact metric spaces, Comp. Math. 40 (1980), 139–152.

L. Hola, J. Pelant and L. Zslinszky, Developable hyperspaces are metrizable, App. Gen. Top. 4 (2003), 351–360.

A. Illanes and S. Nadler, Hyperspaces, Marcel-Dekker (1999).

V. M. Ivanova, On the theory of the space of subsets, Dokl. Akad. Nauk. SSSR 101 (1955), 601–603.

J. Keesling, On the equivalence of normality and compactness in hyperspaces, Pacific J. Math. 33 (1970), 657–667. http://dx.doi.org/10.2140/pjm.1970.33.657

B. Lawrence and R. Oberste-Vorth, Solutions of dynamic equations with varying time scales, Proc. Int. Con. of Difference Equations, Special Functions and Applications (2006).

M. M. McWaters, Arcs, semigroups and hyperspaces, Can. J. Math. 20 (1968), 1207–1210. http://dx.doi.org/10.4153/CJM-1968-115-3

E. Michael, Topologies on spaces of subsets, Trans. Am. Math. Soc. 71 (1951), 152–182. http://dx.doi.org/10.1090/S0002-9947-1951-0042109-4

S. Nadler, Hyperspaces of Sets, Marcel-Dekker (1978).

N. V. Velichko, On spaces of closed subsets, Sibirskii Matem. Z. 16 (1975), 627–629.

L. E. Ward, Arcs in hyperspaces which are not compact, Proc. Amer. Math. Soc. 28 (1971), 254–258. http://dx.doi.org/10.1090/S0002-9939-1971-0275376-0

M. Wojdyslawski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184–192.

L. Zsilinszky, Topological games and hyperspace topologies, Set-Valued Anal. 6 (1998), 187–207. http://dx.doi.org/10.1023/A:1008669420995

Downloads

How to Cite

[1]
N. Esty, “CL(R) is simply connected under the Vietoris topology”, Appl. Gen. Topol., vol. 8, no. 2, pp. 259–265, Oct. 2007.

Issue

Section

Regular Articles