The Alexandroff Duplicate and its subspaces

Authors

  • Agata Caserta Seconda Università degli Studi di Napoli
  • Stephen Watson York University

DOI:

https://doi.org/10.4995/agt.2007.1880

Keywords:

Resolution, Alexandroff duplicate, Lindelöf property, Michaeltype line

Abstract

We study some topological properties of the class of the Alexandroff duplicates and their subspaces. We give a characterization of metrizability and Lindel¨of properties of subspaces of the Alexandroff duplicate. This characterization clarifies the potential for finding Michael spaces among the subspaces of Alexandroff duplicates.

Downloads

Download data is not yet available.

Author Biographies

Agata Caserta, Seconda Università degli Studi di Napoli

Dipartimento di Matematica

Stephen Watson, York University

Department of Mathematics and Statistics

References

P. S. Alexandroff and P. S. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam, 14 (1929).

D. K. Burke and S. W. Davis, Subsets of ωω and generalized metric spaces, Pacific J. Math. 110(2) (1984), 273–281. http://dx.doi.org/10.2140/pjm.1984.110.273

H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math. 8 (1964), 351–360.

J. Dieudonné, Une généralisation des espace compact, J. de Math. Pures et Appl. 23 (1944), 65–76.

A. Dow, An empty class of nonmetric spaces, Proc. Amer. Math. Soc. 104(3) (1988), 999–1001. http://dx.doi.org/10.1090/S0002-9939-1988-0964886-9

R. Engelking, General Topology (Heldermann Verlag, Berlin 1989).

V. V. Fedorcuk, Bicompacta with noncoinciding dimensionalities, Soviet Math. Doklady 9(5) (1968), 1148–1150.

R. F. Gittings, Finite-to-one open maps of generalized metric spaces, Pacific J. Math. 59(1) (1975), 33–41. http://dx.doi.org/10.2140/pjm.1975.59.33

K. Kunen, Set Theory. An Introduction to Independence Proofs, (North-Holland, Amsterdam 1980).

L. B. Lawrence, The influence of a small cardinal on the product of a Lindelöf space and the irrationals, Proc. Amer. Math. Soc. 110(2) (1990), 535–542.

E.Michael, Paracompactness and the Lindelöf property in finite and countable Cartesian products, Compositio Math. 23(2) (1971), 199–214.

E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. http://dx.doi.org/10.1090/S0002-9904-1963-10931-3

Y. Tanaka, Decompositions of spaces determined by compact subsets, Proc. Amer. Math. Soc. 97(3) (1986), 549–555. http://dx.doi.org/10.1090/S0002-9939-1986-0840644-9

E. K. van Douwen, The integers and topology, In K. Kunen and J. Vaughan, (eds.), Handbook of Set-Theoretic Topology 111–169 (North-Holland, Amsterdam, 1984).

S. Watson, The Construction of Topological Spaces: Planks and Resolutions, In M. Husek and J. van Mill (eds.), Recent Progress in General Topology, 673–757 ( North-Holland 1992).

R. J. Wille, Sur les espaces faiblement rétractiles, Ned. Akad. Weten. Proc. 57 (1954), 527–532.

Downloads

How to Cite

[1]
A. Caserta and S. Watson, “The Alexandroff Duplicate and its subspaces”, Appl. Gen. Topol., vol. 8, no. 2, pp. 187–205, Oct. 2007.

Issue

Section

Articles