Relations that preserve compact filters

Frédéric Mynard

Abstract

Many classes of maps are characterized as (possibly multi-valued) maps preserving particular types of compact filters.

Full Text:

PDF

References

A. V. Arhangel'skii, Bisequential spaces, tightness of products, and metrizability conditions in topological groups, Trans. Moscow Math. Soc. 55 (1994), 207–219.

B. Cascales and L. Oncina, Compactoid filters and USCO maps, Math. Analysis and Appl. 282 (2003), 826–845. http://dx.doi.org/10.1016/S0022-247X(03)00280-4

C. H. Cook and H. R. Fischer, Regular convergence spaces, Math. Ann. 174 (1967), 1–7. http://dx.doi.org/10.1007/BF01363119

S. Dolecki, Convergence-theoretic methods in quotient quest, Topology Appl. 73 (1996), 1–21. http://dx.doi.org/10.1016/0166-8641(96)00067-3

S. Dolecki, Active boundaries of upper semicontinuous and compactoid relations; closed and inductively perfect maps, Rostock. Math. Coll. 54 (2000), 51–68.

S. Dolecki, Convergence-theoretic characterizations of compactness, Topology Appl. 125 (2002), 393–417. http://dx.doi.org/10.1016/S0166-8641(01)00283-8

S. Dolecki, G. H. Greco, and A. Lechicki, Compactoid and compact filters, Pacific J. Math. 117 (1985), 69–98. http://dx.doi.org/10.2140/pjm.1985.117.69

S. Dolecki, G. H. Greco, and A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the cocompact topology coincide?, Trans. Amer. Math. Soc. 347 (1995), 2869–2884. http://dx.doi.org/10.1090/S0002-9947-1995-1303118-7

S. Dolecki and F. Mynard, Cascades and multifilters, Topology Appl. 104 (2000), 53–65. [10] Z. Frolík, The topological product of two pseudocompact spaces, Czech. Math. J. 85 (1960), no. 10, 339–349.

Z. Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91. http://dx.doi.org/10.1090/S0002-9904-1967-11653-7

F. Jordan and F. Mynard, Espaces productivement de Fréchet, C. R. Acad. Sci. Paris, Ser I 335 (2002), 259–262.

H. J. Kowalsky, Limesräume und Kompletierung, Math. Nach. 12 (1954), 302–340. http://dx.doi.org/10.1002/mana.19540120504

E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91–138. http://dx.doi.org/10.1016/0016-660X(72)90040-2

F. Mynard, Products of compact filters and applications to classical product theorems, Topology Appl. 154, no. 4 (2007), 953–968. http://dx.doi.org/10.1016/j.topol.2006.09.016

B. J. Pettis, Cluster sets of nets, Proc. Amer. Math. Soc. 22 (1969), 386–391. http://dx.doi.org/10.1090/S0002-9939-1969-0276922-4

J. Vaughan, Products of topological spaces, Gen. Topology Appl. 8 (1978), 207–217. http://dx.doi.org/10.1016/0016-660X(78)90001-6

J. E. Vaughan, Total nets and filters, Topology (Proc. Ninth Annual Spring Topology Conf., Memphis State Univ., Memphis, Tenn., 1975), Lecture Notes in Pure and Appl. Math., Vol. 24 (New York), Dekker, 1976, pp. 259–265.

J. E. Vaughan, Products of topological spaces, Gen. Topology Appl. 8 (1978), 207–217. http://dx.doi.org/10.1016/0016-660X(78)90001-6

Abstract Views

913
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Erratum to “Convergence-theoretic characterizations of compactness” [Topology Appl. 125 (3) (2002) 393–417]
Szymon Dolecki
Topology and its Applications  vol: 154  issue: 6  first page: 1216  year: 2007  
doi: 10.1016/j.topol.2006.10.014



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt