The Cech number of Cp(X) when X is an ordinal space
Submitted: 2013-11-12
|Accepted: 2013-11-12
|Downloads
Keywords:
Spaces of continuous functions, Topology of pointwise convergence, Cech number, Ordinal space
Supporting agencies:
Fapesp
CONACyT and UNAM.
Abstract:
The Cech number of a space Z, C(Z), is the pseudocharacter of Z in βZ. In this article we obtain, in ZFC and assuming SCH, some upper and lower bounds of the Cech number of spaces Cp(X) of realvalued continuous functions defined on an ordinal space X with the pointwise convergence topology.
References:
O. T. Alas and A. Tamariz-Mascarúa, On the Cech number of Cp(X), II Q & A in General Topology 24 (2006), 31–49.
A. V. Arkhangel’skii, Topological Function Spaces, Kluwer Academic Publishers, 1992. http://dx.doi.org/10.1007/978-94-011-2598-7
E. van Douwen, The integers and topology, in Handbook of Set-Theoretic Topology, North-Holland, 1984, Amsterdam–New-York–Oxford, 111–167.
R. Engelking, General topology, PWN, Warszawa, 1977.
L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, New-York-Heidelberg-Berlin, 1976.
T. Jech, Set Theory, Academic Press, New-York-San Francisco-London, 1978.
D. J. Lutzer and R. A. McCoy, Category in function spaces, I, Pacific J. Math. 90 (1980), 145–168. http://dx.doi.org/10.2140/pjm.1980.90.145
O. Okunev and A. Tamariz-Mascarúa, On theCech number of Cp(X), Topology Appl. 137 (2004), 237–249. http://dx.doi.org/10.1016/S0166-8641(03)00213-X
V. V. Tkachuk, Decomposition of Cp(X) into a countable union of subspaces with “good” properties implies “good” properties of Cp(X), Trans. Moscow Math. Soc. 55 (1994), 239–248.



