Partial actions on limit spaces

Authors

  • Bernd Losert Berlin, Germany
  • Gary Richardson University of Central Florida image/svg+xml

DOI:

https://doi.org/10.4995/agt.2023.18665

Keywords:

partial action, limit space, Cauchy space, compactification

Abstract

G-compactifications of continuous partial actions in the category of limit spaces are considered. In particular, sufficient conditions are given to ensure that (G, X, α) has a largest regular G-compactification.

Downloads

Download data is not yet available.

References

F. Abadie, Enveloping actions and Takai duality for partial actions, Journal of Functional Analysis 197, no. 1 (2003), 14-67. https://doi.org/10.1016/S0022-1236(02)00032-0

N. Adu, P. Mikusiński, and G. Richardson, Partial actions on convergence spaces, Mathematicae Slovaca 72, no. 4 (2022), 1001-1016. https://doi.org/10.1515/ms-2022-0070

H. H. Keller, Die Limes-Uniformisierbarkeit der Limesräume, Math. Ann. 176 (1968), 334-341. https://doi.org/10.1007/BF02052894

E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, 1989.

G. Preuss, Foundations of Topology: An Approach to Convenient Topology, Kluwer, 2002. https://doi.org/10.1007/978-94-010-0489-3

G. Richardson and D. Kent, compactifications of convergence spaces, Proc. Amer. Math. 31 (1972), 571-573. https://doi.org/10.1090/S0002-9939-1972-0286074-2

Downloads

Published

2023-10-02

How to Cite

[1]
B. Losert and G. Richardson, “Partial actions on limit spaces”, Appl. Gen. Topol., vol. 24, no. 2, pp. 323–331, Oct. 2023.

Issue

Section

Regular Articles