Cancellation of 3-Point Topological Spaces

Sheila Carter, F.J. Craveiro de Carvalho

Abstract

The cancellation problem, which goes back to S. Ulam, is formulated as follows:

Given topological spaces X, Y, Z, under what circumstances does X × Z ≈Y × Z (≈ meaning homeomorphic to) imply X ≈ Y ?

In it is proved that, for T0 topological spaces and denoting by S the Sierpinski space, if X × S≈Y × S then X≈Y.

This note concerns all nine (up to homeomorphism) 3-point spaces, which are given in.


Keywords

Homeomorphism; Cancellation problem; 3-point spaces

Full Text:

PDF

References

B. Banaschewski and R. Lowen, A cancellation law for partially ordered sets and T0 spaces, Proc. Amer. Math. Soc. 132 (2004).

R. H. Fox, On a problem of S. Ulam concerning cartesian products, Fund. Math. 27 (1947).

K. D. Magill Jr, Universal topological spaces, Amer. Math. Monthly 95 (1988).

J. R. Munkres, Topology, a first course, Prentice-Hall, Inc., 1975.

Abstract Views

1050
Metrics Loading ...

Metrics powered by PLOS ALM


 

Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Some further results on the cancellation law for partially ordered sets and T0-spaces
Jing Liu, Shengwei Han
Topology and its Applications  vol: 300  first page: 107765  year: 2021  
doi: 10.1016/j.topol.2021.107765



Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt