Common fixed point results for a generalized ( ψ, φ )-rational contraction

Authors

DOI:

https://doi.org/10.4995/agt.2023.18320

Keywords:

Fixed point, common fixed point, ( ψ, φ )-contraction

Abstract

In this paper, we obtain two common fixed point results for mappings satisfying the generalized (ψ,φ)-contractive type conditions given by a rational expression on a complete metric space.  Our results generalize several well known theorems of the literature in the context of (ψ,φ)-rational contraction. In addition, there is an example for obtained results.

Downloads

Download data is not yet available.

Author Biographies

M. C. Arya, B. S. R. Govt. Degree College, Rikhanikhal, India

Department of Mathematics

N. Chandra, H. N. B. Garhwal University, India

Department of Mathematic

Mahesh C. Joshi, Kumaun University, India

D. S. B. Campus

References

Ya. I. Alber, and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, Operator Theory Advances Appl. 98 (1997), 7-22. https://doi.org/10.1007/978-3-0348-8910-0_2

M. C. Arya, N. Chandra, and M. C. Joshi, Fixed point of (ψ,φ)-contractions on metric spaces, J. Anal. 28 (2020), 461-469. https://doi.org/10.1007/s41478-019-00181-5

H. Aydi, S. Hadj-Amor, and E. Karapinar, Some almost generalized (ψ-φ)-contractions in G-metric spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 165420. https://doi.org/10.1155/2013/312479

H. Aydi, E. Karapinar, and M. Postolache, Tripled coincidence point theorems for weakly ϕ-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2012 (2012): 44. https://doi.org/10.1186/1687-1812-2012-44

H. Aydi, E. Karapinar, and W. Shatanawi, Coupled fixed point results for (φ, ψ)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62, no. 12 (2011), 4449-4460. https://doi.org/10.1016/j.camwa.2011.10.021

D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-469. https://doi.org/10.1090/S0002-9939-1969-0239559-9

D. Đorić, Common fixed point for generalized (ψ,φ)-weak contraction, Appl. Math. Lett. 22 (2009), 1896-1900. https://doi.org/10.1016/j.aml.2009.08.001

P. N. Dutta, and B. S. Choudhary, A generalization of contraction principle in metric space, Fixed Point Theory Appl. 2008 (2008): 406368. https://doi.org/10.1155/2008/406368

K. Fallahi, G. Soleimani Rad, and A. Fulga, Best proximity points for (ϕ-ψ)-weak contractions and some applications, Filomat 37, no. 6 (2023), in press.

M. Gordji, H. Baghani, and G. Kim, Common fixed point theorems for (ψ,φ)-weak nonlinear contraction in partially ordered sets, Fixed Point Theory Appl. 2012 (2012): 62. https://doi.org/10.1186/1687-1812-2012-62

F. He, Y.-Q. Sun, and X.-Y. Zhao, A common fixed point theorem for generalized (ψ-φ)-weak contractions of Suzuki type, J. Math. Anal. 8, no. 2 (2017), 80-88.

D. Jain, S. Kumar, and C. Park, Variants of R-weakly commuting mappings satisfying a weak contraction, Miskolc Math. Notes 22 (2021), 259-271. https://doi.org/10.18514/MMN.2021.3013

E. Karapinar, Fixed point theory for cyclic weak φ-contraction, Anal. Appl. Lett. 24 (2015), 1-14. https://doi.org/10.1186/s13663-015-0401-7

E. Karapinar, M. Jleli, and B. Samet, Fixed point results for almost generalized cyclic (ψ-ϕ)- weak contractive type mappings with applications, Abstr. Appl. Anal. 2012 (2012): 917831.

E. Karapinar, and K. Sadarangani, Fixed point theory for cyclic (φ-ψ)-contractions, Fixed Point Theory Appl. 2011 (2011): 69. https://doi.org/10.1186/1687-1812-2011-69

E. Karapinar, and B. Samet, Generalized (α-ψ)contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012): 793486. https://doi.org/10.1155/2012/793486

E. Karapinar, M. De La Sen, and A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct. Spaces 2021 (2021), 1-8. https://doi.org/10.1155/2021/6686644

B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1

A. F. Roldán López De Hierro, A. Fulga, E. Karapinar, and N. Shahzad, Proinov-type fixed point result in non-archimedean fuzzy metric spaces, Mathematics 9, no. 14 (2021), 1594. https://doi.org/10.3390/math9141594

Q. Zhang, and Y. Song, Fixed point theory for generalized (φ)-weak contractions, Appl. Math. Lett. 22 (2009), 75-78. https://doi.org/10.1016/j.aml.2008.02.007

Downloads

Published

2023-04-05

How to Cite

[1]
M. C. Arya, N. Chandra, and M. C. . Joshi, “Common fixed point results for a generalized ( ψ, φ )-rational contraction”, Appl. Gen. Topol., vol. 24, no. 1, pp. 129–144, Apr. 2023.

Issue

Section

Regular Articles