Common fixed point results for a generalized ( ψ, φ )-rational contraction
DOI:
https://doi.org/10.4995/agt.2023.18320Keywords:
Fixed point, common fixed point, ( ψ, φ )-contractionAbstract
In this paper, we obtain two common fixed point results for mappings satisfying the generalized (ψ,φ)-contractive type conditions given by a rational expression on a complete metric space. Our results generalize several well known theorems of the literature in the context of (ψ,φ)-rational contraction. In addition, there is an example for obtained results.
Downloads
References
Ya. I. Alber, and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, Operator Theory Advances Appl. 98 (1997), 7-22. https://doi.org/10.1007/978-3-0348-8910-0_2
M. C. Arya, N. Chandra, and M. C. Joshi, Fixed point of (ψ,φ)-contractions on metric spaces, J. Anal. 28 (2020), 461-469. https://doi.org/10.1007/s41478-019-00181-5
H. Aydi, S. Hadj-Amor, and E. Karapinar, Some almost generalized (ψ-φ)-contractions in G-metric spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 165420. https://doi.org/10.1155/2013/312479
H. Aydi, E. Karapinar, and M. Postolache, Tripled coincidence point theorems for weakly ϕ-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2012 (2012): 44. https://doi.org/10.1186/1687-1812-2012-44
H. Aydi, E. Karapinar, and W. Shatanawi, Coupled fixed point results for (φ, ψ)-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. 62, no. 12 (2011), 4449-4460. https://doi.org/10.1016/j.camwa.2011.10.021
D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-469. https://doi.org/10.1090/S0002-9939-1969-0239559-9
D. Đorić, Common fixed point for generalized (ψ,φ)-weak contraction, Appl. Math. Lett. 22 (2009), 1896-1900. https://doi.org/10.1016/j.aml.2009.08.001
P. N. Dutta, and B. S. Choudhary, A generalization of contraction principle in metric space, Fixed Point Theory Appl. 2008 (2008): 406368. https://doi.org/10.1155/2008/406368
K. Fallahi, G. Soleimani Rad, and A. Fulga, Best proximity points for (ϕ-ψ)-weak contractions and some applications, Filomat 37, no. 6 (2023), in press.
M. Gordji, H. Baghani, and G. Kim, Common fixed point theorems for (ψ,φ)-weak nonlinear contraction in partially ordered sets, Fixed Point Theory Appl. 2012 (2012): 62. https://doi.org/10.1186/1687-1812-2012-62
F. He, Y.-Q. Sun, and X.-Y. Zhao, A common fixed point theorem for generalized (ψ-φ)-weak contractions of Suzuki type, J. Math. Anal. 8, no. 2 (2017), 80-88.
D. Jain, S. Kumar, and C. Park, Variants of R-weakly commuting mappings satisfying a weak contraction, Miskolc Math. Notes 22 (2021), 259-271. https://doi.org/10.18514/MMN.2021.3013
E. Karapinar, Fixed point theory for cyclic weak φ-contraction, Anal. Appl. Lett. 24 (2015), 1-14. https://doi.org/10.1186/s13663-015-0401-7
E. Karapinar, M. Jleli, and B. Samet, Fixed point results for almost generalized cyclic (ψ-ϕ)- weak contractive type mappings with applications, Abstr. Appl. Anal. 2012 (2012): 917831.
E. Karapinar, and K. Sadarangani, Fixed point theory for cyclic (φ-ψ)-contractions, Fixed Point Theory Appl. 2011 (2011): 69. https://doi.org/10.1186/1687-1812-2011-69
E. Karapinar, and B. Samet, Generalized (α-ψ)contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012 (2012): 793486. https://doi.org/10.1155/2012/793486
E. Karapinar, M. De La Sen, and A. Fulga, A note on the Gornicki-Proinov type contraction, J. Funct. Spaces 2021 (2021), 1-8. https://doi.org/10.1155/2021/6686644
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
A. F. Roldán López De Hierro, A. Fulga, E. Karapinar, and N. Shahzad, Proinov-type fixed point result in non-archimedean fuzzy metric spaces, Mathematics 9, no. 14 (2021), 1594. https://doi.org/10.3390/math9141594
Q. Zhang, and Y. Song, Fixed point theory for generalized (φ)-weak contractions, Appl. Math. Lett. 22 (2009), 75-78. https://doi.org/10.1016/j.aml.2008.02.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Applied General Topology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
This journal is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike- 4.0 International License.