Contractibility of the digital $n$-space

Authors

  • Sayaka Hamada National Institute of Technology

DOI:

https://doi.org/10.4995/agt.2015.1826

Keywords:

Khalimsky topology, digital $n$-space, contractible, homotopy.

Abstract

The aim of this paper is to prove a known fact that the digital line is cotractible. Hence we have that the digital space $({\bf Z}^{n}, \kappa^{n})$ is also cotractible where $({\bf Z}^{n}, \kappa^{n})$ is $n$ products of the digital line $({\bf Z}, \kappa)$.  This is a fundamental property of homotopy theory.

Downloads

Download data is not yet available.

References

M. Fujimoto, S. Takigawa, J. Dontchev, H. Maki and T. Noiri, The topological structures and groups of digital n-spaces, Kochi J. Math. 1 (2006), 31-55.

S. Hamada and T. Hayashi, Fuzzy topological structures of low dimensional digital spaces, Journal of Fuzzy Mathematics 20, no. 1 (2012), 15-23.

E. D. Khalimsky, On topologies of generalized segments, Soviet Math. Doklady 10 (1969), 1508-1511.

E. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), 1-17. (http://dx.doi.org/10.1016/0166-8641(90)90031-V)

T. Y. Kong, R. Kopperman and P. R. Meyer, A topological approach to digital topology, Am. Math. Monthly 98 (1991), 901-917. (http://dx.doi.org/10.2307/2324147)

E. H. Kronheimer, The topology of digital images, Topology Appl. 46 (1992), 279-303. (http://dx.doi.org/10.1016/0166-8641(92)90019-V)

G. Raptis, Homotopy theory of posets, Homology, Homotopy and Applications 12, no. 2 (2010), 211-230. (http://dx.doi.org/10.4310/HHA.2010.v12.n2.a7)

Downloads

Published

2015-01-28

How to Cite

[1]
S. Hamada, “Contractibility of the digital $n$-space”, Appl. Gen. Topol., vol. 16, no. 1, pp. 15–17, Jan. 2015.

Issue

Section

Regular Articles