Contractibility of the digital $n$-space

Sayaka Hamada


The aim of this paper is to prove a known fact that the digital line is cotractible. Hence we have that the digital space $({\bf Z}^{n}, \kappa^{n})$ is also cotractible where $({\bf Z}^{n}, \kappa^{n})$ is $n$ products of the digital line $({\bf Z}, \kappa)$.  This is a fundamental property of homotopy theory.


Khalimsky topology; digital $n$-space; contractible; homotopy.

Subject classification

14F35; 54B10.

Full Text:



M. Fujimoto, S. Takigawa, J. Dontchev, H. Maki and T. Noiri, The topological structures and groups of digital n-spaces, Kochi J. Math. 1 (2006), 31-55.

S. Hamada and T. Hayashi, Fuzzy topological structures of low dimensional digital spaces, Journal of Fuzzy Mathematics 20, no. 1 (2012), 15-23.

E. D. Khalimsky, On topologies of generalized segments, Soviet Math. Doklady 10 (1969), 1508-1511.

E. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), 1-17. (

T. Y. Kong, R. Kopperman and P. R. Meyer, A topological approach to digital topology, Am. Math. Monthly 98 (1991), 901-917. (

E. H. Kronheimer, The topology of digital images, Topology Appl. 46 (1992), 279-303. (

G. Raptis, Homotopy theory of posets, Homology, Homotopy and Applications 12, no. 2 (2010), 211-230. (

Abstract Views

Metrics Loading ...

Metrics powered by PLOS ALM


Cited-By (articles included in Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Fundamental group of the digital circle
Pooja Singh, Dania Masood
Asian-European Journal of Mathematics  vol: 11  issue: 06  first page: 1850082  year: 2018  
doi: 10.1142/S1793557118500821

Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147