On σ-starcompact spaces

Yan-Kui Song

Abstract

A space X is σ-starcompact if for every open cover U of X, there exists a σ-compact subset C of X such that St(C, U) = X. We investigate the relations between σ-starcompact spaces and other related spaces, and also study topological properties of σ-starcompact spaces.


Keywords

Lindelöf; σ-starcompact; L-starcompact

Full Text:

PDF

References

E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71–103.

http://dx.doi.org/10.1016/0166-8641(91)90077-Y

R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag., 1989. (1991), 255–271.

G. R. Hiremath, On star with Lindel¨of center property, J. Indian Math. Soc. 59 (1993), 227–242.

W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1971), 1–9.

R. C. Walker, The Stone-Cech compactification, Berlin, 1974.

M. V. Matveev, A survey on star covering properties, Topology Atlas., preprint No. 330, 1998.

S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105–106.

Y.-K. Song, On L-starcompact spaces, Czech. Math. J. 56 (2006), 781–788.

http://dx.doi.org/10.1007/s10587-006-0056-y

Abstract Views

1079
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Universitat Politècnica de València

e-ISSN: 1989-4147   https://doi.org/10.4995/agt