On σ-starcompact spaces
DOI:
https://doi.org/10.4995/agt.2008.1808Keywords:
Lindelöf, σ-starcompact, L-starcompactAbstract
A space X is σ-starcompact if for every open cover U of X, there exists a σ-compact subset C of X such that St(C, U) = X. We investigate the relations between σ-starcompact spaces and other related spaces, and also study topological properties of σ-starcompact spaces.
Downloads
References
E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71–103.
http://dx.doi.org/10.1016/0166-8641(91)90077-Y
R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag., 1989. (1991), 255–271.
G. R. Hiremath, On star with Lindel¨of center property, J. Indian Math. Soc. 59 (1993), 227–242.
W. M. Fleischman, A new extension of countable compactness, Fund. Math. 67 (1971), 1–9.
R. C. Walker, The Stone-Cech compactification, Berlin, 1974.
M. V. Matveev, A survey on star covering properties, Topology Atlas., preprint No. 330, 1998.
S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105–106.
Y.-K. Song, On L-starcompact spaces, Czech. Math. J. 56 (2006), 781–788.
Downloads
How to Cite
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.